Brain Structure and Function

, Volume 222, Issue 4, pp 1673–1683 | Cite as

Awake whole-brain functional connectivity alterations in the adolescent spontaneously hypertensive rat feature visual streams and striatal networks

  • G. L. Poirier
  • W. Huang
  • K. Tam
  • J. R. DiFranza
  • Jean A. King
Original Article

Abstract

Brain mechanisms underpinning attention deficit/hyperactivity disorder (ADHD) are incompletely understood. The adolescent spontaneously hypertensive rat (SHR) is a widely studied preclinical model that expresses several of the key behavioral features associated with ADHD. Yet, little is known about large-scale functional connectivity patterns in the SHR, and their potential similarity to those of humans with ADHD. Using an approach comparable to human studies, magnetic resonance imaging in the awake animal was performed to identify whole-brain intrinsic neural connectivity patterns. An independent components analysis of resting-state functional connectivity demonstrated many common components between the SHR and both Wistar Kyoto and Sprague–Dawley control strains, but there was a divergence in other networks. In the SHR, three functional networks involving the striatum had only weak correlations with networks in the two control strains. Conversely, networks involving the visual cortex that was present in both control strains had only weak correlations with networks in the SHR. The implication is that the patterns of brain activity differ between the SHR and the other strains, suggesting that brain connectivity patterns in this animal model of ADHD may provide insights into the neural basis of ADHD. Brain connectivity patterns might also serve to identify brain circuits that could be targeted for the manipulation and evaluation of potential therapeutic options.

Keywords

Attention deficit/hyperactivity disorder Spontaneously hypertensive rat Magnetic resonance imaging Neuroimaging Resting-state functional connectivity Basal ganglia Caudate Putamen Visual stream Neural network 

Supplementary material

429_2016_1301_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)
429_2016_1301_MOESM2_ESM.pdf (1.4 mb)
Supplementary material 2 (PDF 1432 kb)

References

  1. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271CrossRefPubMedGoogle Scholar
  2. Atanur Santosh S, Diaz Ana G, Maratou K, Sarkis A, Rotival M, Game L, Tschannen Michael R, Kaisaki Pamela J, Otto Georg W, Ma Man Chun J, Keane Thomas M, Hummel O, Saar K, Chen W, Guryev V, Gopalakrishnan K, Garrett Michael R, Joe B, Citterio L, Bianchi G, McBride M, Dominiczak A, Adams David J, Serikawa T, Flicek P, Cuppen E, Hubner N, Petretto E, Gauguier D, Kwitek A, Jacob H, Aitman Timothy J (2013) Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154:691–703CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 35:48–69CrossRefGoogle Scholar
  4. Becerra L, Pendse G, Chang P-C, Bishop J, Borsook D (2011) Robust reproducible resting state networks in the awake rodent brain. PLoS One 6:e25701CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347CrossRefPubMedGoogle Scholar
  6. Bettinardi RG, Tort-Colet N, Ruiz-Mejias M, Sanchez-Vives MV, Deco G (2015) Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. Neuroimage 114:185–198CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biederman J, Petty CR, Clarke A, Lomedico A, Faraone SV (2011) Predictors of persistent ADHD: an 11-year follow-up study. J Psychiatr Res 45:150–155CrossRefPubMedGoogle Scholar
  8. Bull E, Reavill C, Hagan JJ, Overend P, Jones DNC (2000) Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res 109:27–35CrossRefPubMedGoogle Scholar
  9. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, Zuo X, Zang Y, Wang Y (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder. Brain Res 1303:195–206CrossRefPubMedGoogle Scholar
  10. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in cognitive sciences 16:17–26CrossRefPubMedGoogle Scholar
  11. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628CrossRefPubMedGoogle Scholar
  12. Chabernaud C, Mennes M, Kelly C, Nooner K, Di Martino A, Castellanos FX, Milham MP (2012) Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:434–442CrossRefPubMedGoogle Scholar
  13. Chen G, Buck KJ (2010) Rostroventral caudate putamen involvement in ethanol withdrawal is influenced by a chromosome 4 locus. Genes Brain Behav 9:768–776CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chess AC, Green JT (2008) Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 122:63–74CrossRefPubMedGoogle Scholar
  15. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159CrossRefPubMedGoogle Scholar
  16. Costa Dias TG, Wilson VB, Bathula DR, Iyer SP, Mills KL, Thurlow BL, Stevens CA, Musser ED, Carpenter SD, Grayson DS, Mitchell SH, Nigg JT, Fair DA (2013) Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 23:33–45CrossRefPubMedGoogle Scholar
  17. Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH, Nigg JT, Fair DA (2015) Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci 11:155–174CrossRefPubMedPubMedCentralGoogle Scholar
  18. Danker JF, Duong TQ (2007) Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder. Brain Res 1150:217–224CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deshmukh SS, Knierim JJ (2011) Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci 5:69CrossRefPubMedPubMedCentralGoogle Scholar
  20. Elton A, Alcauter S, Gao W (2014) Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp 35:4531–4543CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fair DA, Bathula D, Nikolas MA, Nigg JT (2012a) Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci 109:6769–6774CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU, Schlaggar BL, Mennes M, Gutman D, Bangaru S, Buitelaar JK, Dickstein DP, Di Martino A, Kennedy DN, Kelly C, Luna B, Schweitzer JB, Velanova K, Wang YF, Mostofsky S, Castellanos FX, Milham MP (2012b) Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 6:80PubMedGoogle Scholar
  23. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular Genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323CrossRefPubMedGoogle Scholar
  24. Faure A, Haberland U, Condé F, Massioui NE (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780CrossRefPubMedGoogle Scholar
  25. Ferguson SA, Cada AM (2003) A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rats. Behav Neurosci 117:271–282CrossRefPubMedGoogle Scholar
  26. Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ (2007) Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar–Kyoto, and Sprague–Dawley rat strains. Neurotoxicol Teratol 29:547–561CrossRefPubMedGoogle Scholar
  27. Galeno TM, Van Hoesen GW, Brody MJ (1984) Central amygdaloid nucleus lesion attenuates exaggerated hemodynamic responses to noise stress in the spontaneously hypertensive rat. Brain Res 291:249–259CrossRefPubMedGoogle Scholar
  28. Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci: Off J Soc Neurosci 7:3915–3934Google Scholar
  29. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM, Beckmann CF, Fox PT, Blangero J (2010) Genetic control over the resting brain. Proc Natl Acad Sci 107:1223–1228CrossRefPubMedPubMedCentralGoogle Scholar
  30. Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136CrossRefPubMedGoogle Scholar
  31. Graybiel A, Aosaki T, Flaherty A, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831CrossRefPubMedGoogle Scholar
  32. Green JT, Chess AC, Conquest CJ, Yegla BA (2011) Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 125:979–987CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gruber AJ, McDonald RJ (2012) Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behaviour. Front Behav Neurosci 6:50. doi:10.3389/fnbeh.2012.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haber S (2011) Neuroanatomy of Reward: a view from the ventral striatum. In: Gottfried J (ed) Neurobiology of sensation and reward. CRC Press, Boca RatonGoogle Scholar
  35. Heijtz RD, Castellanos F (2006) Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2:1–10CrossRefGoogle Scholar
  36. Hong LE, Hodgkinson CA, Yang Y, Sampath H, Ross TJ, Buchholz B, Salmeron BJ, Srivastava V, Thaker GK, Goldman D, Stein EA (2010) A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci USA 107:13509–13514CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang SM, Wu YL, Peng SL, Peng HH, Huang TY, Ho KC, Wang FN (2016) Inter-strain differences in default mode network: a resting state fmri study on spontaneously hypertensive Rat and Wistar Kyoto Rat. Sci Rep 6:21697CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state fMRI. J Neurophysiol 103(6):3398–3406CrossRefPubMedGoogle Scholar
  39. Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7T. Neuroimage 56:1546–1555CrossRefPubMedGoogle Scholar
  40. Jentsch JD (2005) Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res 157:323–330CrossRefPubMedGoogle Scholar
  41. Jonckers E, Van Audekerke J, De Visscher G, Van der Linden A, Verhoye M (2011) Functional connectivity fMRI of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6:e18876CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jonckers E, Delgado y Palacios R, Shah D, Guglielmetti C, Verhoye M, Van der Linden A (2014) Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 72:1103–1112CrossRefPubMedGoogle Scholar
  43. Karalunas SL, Fair D, Musser ED, Aykes K, Iyer SP, Nigg JT (2014) Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71:1015–1024CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kaymaz N, van Os J (2009) Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 89:85–130CrossRefPubMedGoogle Scholar
  45. Kessler D, Angstadt M, Welsh R, Sripada C (2014) Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter. J Neurosci 34:16555–16566CrossRefPubMedPubMedCentralGoogle Scholar
  46. King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kirouac GJ, Ganguly PK (1993) Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience 52:135–141CrossRefPubMedGoogle Scholar
  48. Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A (2014) The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 274:235–242CrossRefPubMedGoogle Scholar
  49. Kochunov P, Glahn DC, Lancaster JL, Winkler AM, Smith S, Thompson PM, Almasy L, Duggirala R, Fox PT, Blangero J (2010) Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage 53:1109–1116CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ, Pacheco J, Perry ME, Stevens A, Schmitt JE, Grant MD, Seidman LJ, Thermenos HW, Tsuang MT, Eisen SA, Dale AM, Fennema-Notestine C (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49:1213–1223CrossRefPubMedGoogle Scholar
  51. Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376CrossRefPubMedGoogle Scholar
  52. Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857CrossRefPubMedGoogle Scholar
  53. Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1792:766–776CrossRefGoogle Scholar
  54. Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci: Off J Soc Neurosci 31:3776–3783CrossRefGoogle Scholar
  55. Liang Z, King J, Zhang N (2012a) Anticorrelated resting-state functional connectivity in awake rat brain. Neuroimage 59:1190–1199CrossRefPubMedGoogle Scholar
  56. Liang Z, King J, Zhang N (2012b) Intrinsic organization of the anesthetized brain. J Neurosci: Off J Soc Neurosci 32:10183–10191CrossRefGoogle Scholar
  57. Liang Z, Li T, King J, Zhang N (2013) Mapping thalamocortical networks in rat brain using resting-state functional connectivity. Neuroimage 83C:237–244CrossRefGoogle Scholar
  58. Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lopez-Gil X, Amat-Roldan I, Tudela R, Castane A, Prats-Galino A, Planas AM, Farr TD, Soria G (2014) DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 6:167PubMedPubMedCentralGoogle Scholar
  60. McClernon FJ, Kollins SH (2008) ADHD and smoking: from genes to brain to behavior. Ann N Y Acad Sci 1141:131–147CrossRefPubMedPubMedCentralGoogle Scholar
  61. McDougall SJ, Paull JRA, Widdop RE, Lawrence AJ (2000) Restraint stress: differential cardiovascular responses in Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 35:126–129CrossRefPubMedGoogle Scholar
  62. McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537CrossRefPubMedGoogle Scholar
  63. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454CrossRefPubMedGoogle Scholar
  64. Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179CrossRefPubMedGoogle Scholar
  65. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  66. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948CrossRefPubMedGoogle Scholar
  67. Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol Rev 24:3–15CrossRefPubMedPubMedCentralGoogle Scholar
  68. Robinson AM, Hopkins ME, Bucci DJ (2011) Effects of physical exercise on ADHD-like behavior in male and female adolescent spontaneously hypertensive rats. Dev Psychobiol 53:383–390CrossRefPubMedGoogle Scholar
  69. Russell VA (2011) Overview of Animal Models of Attention Deficit Hyperactivity Disorder (ADHD). Curr Protoc Neurosci. doi:10.1002/0471142301.ns0935s54 PubMedGoogle Scholar
  70. Sagvolden T, Johansen EB (2012) Rat models of ADHD. Curr Top Behav Neurosci 9:301–315CrossRefPubMedGoogle Scholar
  71. Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby Ø, Jensen V, Aase H, Russell VA, Killeen PR, DasBanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sakata JT, Crews D, Gonzalez-Lima F (2005) Behavioral correlates of differences in neural metabolic capacity. Brain Res Rev 48:1–15CrossRefPubMedGoogle Scholar
  73. Shaw M, Hodgkins P, Caci H, Young S, Kahle J, Woods AG, Arnold LE (2012) A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med 10:99CrossRefPubMedPubMedCentralGoogle Scholar
  74. Subcommittee on Attention-Deficit/Hyperactivity Disorder SCoQI, Management (2011) ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 128:1007–1022CrossRefGoogle Scholar
  75. Thapar A, Langley K, Asherson P, Gill M (2007) Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective. Br J Psychiatry 190:1–3CrossRefPubMedGoogle Scholar
  76. Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M, Dail R, Zoumalan CI, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4:1253–1258CrossRefPubMedGoogle Scholar
  77. Tomasi D, Volkow ND (2012) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:443–450CrossRefPubMedGoogle Scholar
  78. Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler LA, Castellanos FX, Milham MP (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169:249–254CrossRefPubMedGoogle Scholar
  79. van den Bergh FS, Bloemarts E, Chan JSW, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390CrossRefPubMedGoogle Scholar
  80. van den Heuvel MP, van Soelen ILC, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 23:19–23CrossRefPubMedGoogle Scholar
  81. Vendruscolo LF, Izidio GS, Takahashi RN (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorder—the spontaneously hypertensive Rat (SHR). Curr Drug Abuse Rev 2:177–183CrossRefPubMedGoogle Scholar
  82. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86CrossRefPubMedGoogle Scholar
  83. Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474CrossRefPubMedGoogle Scholar
  84. Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T (1997) Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 38:470–474PubMedGoogle Scholar
  85. Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76CrossRefPubMedGoogle Scholar
  86. Wickens JR, Hyland BI, Tripp G (2011) Animal models to guide clinical drug development in ADHD: lost in translation? Br J Pharmacol 164:1107–1128CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yoder RM, Clark BJ, Taube JS (2011) Origins of landmark encoding in the brain. Trends Neurosci 34:561–571CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang N, Rane P, Huang W, Liang Z, Kennedy D, Frazier JA, King J (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189:186–196CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang-James Y, Middleton FA, Faraone SV (2013) Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol Genomics 45(13):528–538. doi:10.1152/physiolgenomics.00002.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhou IY, Liang YX, Chan RW, Gao PP, Cheng JS, Hu Y, So KF, Wu EX (2014) Brain resting-state functional MRI connectivity: morphological foundation and plasticity. Neuroimage 84:1–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  • G. L. Poirier
    • 1
  • W. Huang
    • 1
  • K. Tam
    • 1
  • J. R. DiFranza
    • 1
    • 4
  • Jean A. King
    • 1
    • 2
    • 3
  1. 1.Department of Psychiatry, Center for Comparative NeuroImagingUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  4. 4.Department of Family Medicine and Community HealthUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations