Advertisement

Brain Structure and Function

, Volume 222, Issue 4, pp 1635–1644 | Cite as

Salience network connectivity in the insula is associated with individual differences in interoceptive accuracy

  • Joanna Su Xian Chong
  • Gavin Jun Peng Ng
  • Sze Chi Lee
  • Juan ZhouEmail author
Original Article

Abstract

The insula and the anterior cingulate cortex are core brain regions that anchor the salience network, one of several large-scale intrinsic functional connectivity networks that have been derived consistently using resting-state functional magnetic resonance imaging (fMRI). While several studies have shown that the insula and anterior cingulate cortex play important roles in interoceptive awareness, no study to date has examined the association between intrinsic salience network connectivity and interoceptive awareness. In this study, we sought to test this idea in 26 healthy young participants who underwent a resting-state fMRI scan and a heartbeat counting task outside the scanner in the same session. Greater salience network connectivity in the posterior insula (but not the anterior cingulate cortex) using independent component analysis correlated with higher accuracy in the heartbeat counting task. Furthermore, using seed-based approach, greater interoceptive accuracy was associated with greater intrinsic connectivity of all insular functional subdivisions to salience network regions, including the anterior insula, orbitofrontal cortex, ventral striatum and midbrain. These associations remained after correcting for voxel-wise grey matter volumes. The findings underscore the critical role of insular salience network intrinsic connectivity in interoceptive awareness and pave the way for future investigations into how salience network dysconnectivity affects interoceptive awareness in brain disorders.

Keywords

Salience network Interoceptive awareness Insula Intrinsic functional connectivity 

Notes

Acknowledgments

This research was supported by the Agency for Science, Technology, and Research (A*STAR), Singapore under the Biomedical Research Council (13/1/96/19/687, JZ), Collaborative Basic Research Grant under the National Medical Research Council (CBRG/0088/2015, JZ) and Duke-NUS Medical School Signature Research Program funded by Ministry of Health, Singapore. We thank the research staff involved in recruiting and assessing the participants in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2016_1297_MOESM1_ESM.docx (79.5 mb)
Supplementary material 1 (DOCX 81433 kb)

References

  1. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113. doi: 10.1016/j.neuroimage.2007.07.007 CrossRefPubMedGoogle Scholar
  2. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  3. Brener J, Kluvitse C (1988) Heartbeat detection: judgments of the simultaneity of external stimuli and heartbeats. Psychophysiology 25:554–561CrossRefPubMedGoogle Scholar
  4. Brett M, Anton J, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox (abstract). In: Paper presented at the 8th international conference on functional mapping of the human brain, Sendai, Japan, 2–6 JuneGoogle Scholar
  5. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151. doi: 10.1002/hbm.1048 CrossRefPubMedGoogle Scholar
  6. Cameron OG (2001) Interoception: the inside story–a model for psychosomatic processes. Psychosom Med 63:697–710CrossRefPubMedGoogle Scholar
  7. Casanova R et al (2007) Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34:137–143. doi: 10.1016/j.neuroimage.2006.09.011 CrossRefPubMedGoogle Scholar
  8. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173. doi: 10.1006/cbmr.1996.0014 CrossRefPubMedGoogle Scholar
  9. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666CrossRefPubMedGoogle Scholar
  10. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505. doi: 10.1016/s0959-4388(03)00090-4 CrossRefPubMedGoogle Scholar
  11. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70. http://www.nature.com/nrn/journal/v10/n1/suppinfo/nrn2555_S1.html
  12. Critchley HD, Harrison NA (2013) Visceral influences on brain and behavior. Neuron 77:624–638. doi: 10.1016/j.neuron.2013.02.008 CrossRefPubMedGoogle Scholar
  13. Critchley HD, Mathias CT, Dolan RJ (2001) Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci 4:207–212. doi: 10.1038/84048 CrossRefPubMedGoogle Scholar
  14. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195. doi: 10.1038/nn1176 CrossRefPubMedGoogle Scholar
  15. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853. doi: 10.1073/pnas.0601417103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Di Martino A et al (2009) Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 166:891–899. doi: 10.1176/appi.ajp.2009.08121894 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ebisch SJ et al (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32:1013–1028. doi: 10.1002/hbm.21085 CrossRefPubMedGoogle Scholar
  18. Ehlers A, Margraf J, Roth WT (1988) Selective information processing, interoception, and panic attacks. In: Hand I, Wittchen H-U (eds) Panic and phobias 2. Springer, Berlin Heidelberg, pp 129–148. doi: 10.1007/978-3-642-73543-1_12 CrossRefGoogle Scholar
  19. Ehlers A, Mayou RA, Sprigings DC, Birkhead J (2000) Psychological and perceptual factors associated with arrhythmias and benign palpitations. Psychosom Med 62:693–702CrossRefPubMedGoogle Scholar
  20. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095. doi: 10.1002/hbm.21170 CrossRefPubMedGoogle Scholar
  21. Falissard B (2012) psy: various procedures used in psychometry. R package version 1.1. http://CRAN.R-project.org/package=psy
  22. Farb NA, Segal ZV, Anderson AK (2013) Attentional modulation of primary interoceptive and exteroceptive cortices. Cereb Cortex 23:114–126. doi: 10.1093/cercor/bhr385 CrossRefPubMedGoogle Scholar
  23. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi: 10.1038/nrn2201 CrossRefPubMedGoogle Scholar
  24. Garfinkel SN, Seth AK, Barrett AB, Suzuki K, Critchley HD (2015) Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biol Psychol 104:65–74. doi: 10.1016/j.biopsycho.2014.11.004 CrossRefPubMedGoogle Scholar
  25. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642. doi: 10.1073/pnas.0308627101 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48:63–72. doi: 10.1016/j.neuroimage.2009.06.060 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo CC et al (2013) Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain 136:2979–2991. doi: 10.1093/brain/awt222 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594. doi: 10.1523/JNEUROSCI.1868-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26:13338–13343. doi: 10.1523/JNEUROSCI.3408-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790. doi: 10.1016/j.neuroimage.2011.09.015 CrossRefPubMedGoogle Scholar
  31. Kuehn E, Mueller K, Lohmann G, Schuetz-Bosbach S (2016) Interoceptive awareness changes the posterior insula functional connectivity profile. Brain Struct Funct 221:1555–1571. doi: 10.1007/s00429-015-0989-8 CrossRefPubMedGoogle Scholar
  32. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534. doi: 10.1007/s00429-010-0255-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. Leopold C, Schandry R (2001) The heartbeat-evoked brain potential in patients suffering from diabetic neuropathy and in healthy control persons. Clin Neurophysiol 112:674–682CrossRefPubMedGoogle Scholar
  34. Meissner K, Wittmann M (2011) Body signals, cardiac awareness, and the perception of time. Biol Psychol 86:289–297. doi: 10.1016/j.biopsycho.2011.01.001 CrossRefPubMedGoogle Scholar
  35. Mennes M, Kelly C, Colcombe S, Castellanos FX, Milham MP (2013) The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cereb Cortex 23:223–229. doi: 10.1093/cercor/bhs010 CrossRefPubMedGoogle Scholar
  36. Menon V (2015) Salience Network. In: Toga AW (ed) Brain mapping: an encyclopedic reference, vol 2. Academic Press, Elsevier, pp 597–611CrossRefGoogle Scholar
  37. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. doi: 10.1007/s00429-010-0262-0 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mussgay L, Klinkenberg N, Ruddel H (1999) Heart beat perception in patients with depressive, somatoform, and personality disorders. J Psychophysiol 13:27–36. doi: 10.1027//0269-8803.13.1.27 CrossRefGoogle Scholar
  39. Ng KK, Lo JC, Lim JKW, Chee MWL, Zhou J (2016) Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study. Neuroimage 133:321–330. doi: 10.1016/j.neuroimage.2016.03.029 CrossRefPubMedGoogle Scholar
  40. Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF (2013) Neural primacy of the salience processing system in schizophrenia. Neuron 79:814–828. doi: 10.1016/j.neuron.2013.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pollatos O, Kirsch W, Schandry R (2005) Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Hum Brain Mapp 26:54–64. doi: 10.1002/hbm.20121 CrossRefPubMedGoogle Scholar
  42. Pollatos O, Schandry R, Auer DP, Kaufmann C (2007) Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Res 1141:178–187. doi: 10.1016/j.brainres.2007.01.026 CrossRefPubMedGoogle Scholar
  43. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
  44. Rajapakse JC, Giedd JN, Rapoport JL (1997) Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 16:176–186. doi: 10.1109/42.563663 CrossRefPubMedGoogle Scholar
  45. Rehme AK, Eickhoff SB, Grefkes C (2013) State-dependent differences between functional and effective connectivity of the human cortical motor system. Neuroimage 67:237–246. doi: 10.1016/j.neuroimage.2012.11.027 CrossRefPubMedGoogle Scholar
  46. Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT (2015) Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage 104:69–78. doi: 10.1016/j.neuroimage.2014.09.045 CrossRefPubMedGoogle Scholar
  47. Schaefer M, Egloff B, Witthoft M (2012) Is interoceptive awareness really altered in somatoform disorders? Testing competing theories with two paradigms of heartbeat perception. J Abnorm Psychol 121:719–724CrossRefPubMedGoogle Scholar
  48. Schandry R (1981) Heart beat perception and emotional experience. Psychophysiology 18:483–488CrossRefPubMedGoogle Scholar
  49. Schulz A, Lass-Hennemann J, Sutterlin S, Schachinger H, Vogele C (2013) Cold pressor stress induces opposite effects on cardioceptive accuracy dependent on assessment paradigm. Biol Psychol 93:167–174. doi: 10.1016/j.biopsycho.2013.01.007 CrossRefPubMedGoogle Scholar
  50. Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sheline YI, Raichle ME (2013) Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 74:340–347. doi: 10.1016/j.biopsych.2012.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shields SA, Mallory ME, Simon A (1989) The body awareness questionnaire—reliability and validity. J Pers Assess 53:802–815. doi: 10.1207/s15327752jpa5304_16 CrossRefGoogle Scholar
  53. Uddin LQ et al (2013) Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70:869–879. doi: 10.1001/jamapsychiatry.2013.104 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van Oudenhove L, Demyttenaere K, Tack J, Aziz Q (2004) Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol 18:663–680. doi: 10.1016/j.bpg.2004.04.010 CrossRefPubMedGoogle Scholar
  55. Wang C et al. (2016) Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol Med. doi: 10.1017/s0033291716001410 Google Scholar
  56. Whitehead WE, Drescher VM, Heiman P, Blackwell B (1977) Realtion of heart rate control to heartbeat perception. Biofeedback Self Regul 2:317–392CrossRefPubMedGoogle Scholar
  57. Wiech K, Jbabdi S, Lin CS, Andersson J, Tracey I (2014) Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain 155:2047–2055. doi: 10.1016/j.pain.2014.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wiens S, Palmer SN (2001) Quadratic trend analysis and heartbeat detection. Biol Psychol 58:159–175CrossRefPubMedGoogle Scholar
  59. Zhou J, Seeley WW (2014) Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry 75:565–573. doi: 10.1016/j.biopsych.2014.01.020 CrossRefPubMedGoogle Scholar
  60. Zhou J et al (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133:1352–1367. doi: 10.1093/brain/awq075 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joanna Su Xian Chong
    • 1
  • Gavin Jun Peng Ng
    • 1
  • Sze Chi Lee
    • 1
  • Juan Zhou
    • 1
    • 2
    Email author
  1. 1.Neuroscience and Behavioural Disorders Programme, Centre for Cognitive NeuroscienceDuke-NUS Medical SchoolSingaporeSingapore
  2. 2.Clinical Imaging Research Centre, The Agency for Science, Technology and ResearchNational University of SingaporeSingaporeSingapore

Personalised recommendations