Brain Structure and Function

, Volume 222, Issue 3, pp 1427–1446 | Cite as

Adult-born dentate granule cells show a critical period of dendritic reorganization and are distinct from developmentally born cells

  • Marcel Beining
  • Tassilo Jungenitz
  • Tijana Radic
  • Thomas Deller
  • Hermann Cuntz
  • Peter Jedlicka
  • Stephan Wolfgang Schwarzacher
Original Article


Adult-born dentate granule cells (abGCs) exhibit a critical developmental phase during function integration. The time window of this phase is debated and whether abGCs become indistinguishable from developmentally born mature granule cells (mGCs) is uncertain. We analyzed complete dendritic reconstructions from abGCs and mGCs using viral labeling. AbGCs from 21–77 days post intrahippocampal injection (dpi) exhibited comparable dendritic arbors, suggesting that structural maturation precedes functional integration. In contrast, significant structural differences were found compared to mGCs: AbGCs had more curved dendrites, more short terminal segments, a different branching pattern, and more proximal terminal branches. Morphological modeling attributed these differences to developmental dendritic pruning and postnatal growth of the dentate gyrus. We further correlated GC morphologies with the responsiveness to unilateral medial perforant path stimulation using the immediate–early gene Arc as a marker of synaptic activation. Only abGCs at 28 and 35 dpi but neither old abGCs nor mGCs responded to stimulation with a remodeling of their dendritic arbor. Summarized, abGCs stay distinct from mGCs and their dendritic arbor can be shaped by afferent activity during a narrow critical time window.


Arc Dentate gyrus HFS Morphological model Neurogenesis 



This work was supported by the LOEWE-Program “Neuronal Coordination Research Focus Frankfurt” (NeFF), by the German Science Foundation (CRC 1180), by the Federal Ministry of Education and Research (BMBF, to PJ, No. 01GQ1203A), by a Young Investigators Grant (from the faculty of medicine Goethe-University to PJ), and by a BMBF grant (No. 01GQ1406, Bernstein Award 2013) to HC. MB was further supported by the International Max Planck Research School (IMPRS) for Neural Circuits in Frankfurt. We thank Torsten Felske for help with GC reconstruction. We are indebted to Ute Fertig for technical assistance in preparing and staining of hippocampal slices.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2016_1285_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 120 kb)


  1. Alcántara S, Ruiz M, Arcangelo GD, Ezan F, De Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18:7779–7799PubMedGoogle Scholar
  2. Amaral D, Scharfman H, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 153:390–394Google Scholar
  3. Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251CrossRefPubMedGoogle Scholar
  4. Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Göbel J, Yang SM, Conzelmann KK, Schinder AF, Götz M, Berninger B (2015) A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron 85:710–717CrossRefPubMedGoogle Scholar
  5. Bergmann O, Spalding KL, Frisén J (2015) Adult neurogenesis in humans. Cold Spring Harb Perspect Biol 7:1–12CrossRefGoogle Scholar
  6. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The arc of synaptic memory. Exp Brain Res 200:125–140CrossRefPubMedGoogle Scholar
  7. Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494–502CrossRefPubMedGoogle Scholar
  8. Brunner J, Neubrandt M, Van-Weert S, Andrási T, Kleine Borgmann FB, Jessberger S, Szabadics J (2014) Adult-born granule cells mature through two functionally distinct states. Elife 24:e03104Google Scholar
  9. Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219CrossRefPubMedGoogle Scholar
  10. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6:e1000877CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cuntz H, Forstner F, Borst A, Häusser M (2011) The TREES toolbox—probing the basis of axonal and dendritic branching. Neuroinformatics 9:91–96CrossRefPubMedGoogle Scholar
  15. D’Arcangelo G (2014) Reelin in the years: controlling neuronal migration and maturation in the mammalian brain. Adv Neurosci 2014:1–19CrossRefGoogle Scholar
  16. Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. Elife 2:e00312CrossRefPubMedPubMedCentralGoogle Scholar
  17. Desmond NL, Levy WB (1982) A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method. J Comp Neurol 212:131–145CrossRefPubMedGoogle Scholar
  18. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158CrossRefPubMedPubMedCentralGoogle Scholar
  19. Emoto K (2011) Dendrite remodeling in development and disease. Dev Growth Differ 53:277–286CrossRefPubMedGoogle Scholar
  20. Espósito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074–10086CrossRefPubMedGoogle Scholar
  21. Fitzsimons CP, van Hooijdonk LW, Schouten M, Zalachoras I, Brinks V, Zheng T, Schouten TG, Saaltink DJ, Dijkmans T, Steindler DA, Verhaagen J, Verbeek FJ, Lucassen PJ, de Kloet ER, Meijer OC, Karst H, Joels M, Oitzl MS, Vreugdenhil E (2013) Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 18:993–1005CrossRefPubMedGoogle Scholar
  22. Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F (2010) The role of synapsins in neuronal development. Cell Mol Life Sci 67:1383–1396CrossRefPubMedGoogle Scholar
  23. Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267CrossRefPubMedGoogle Scholar
  24. Frotscher M (2010) Role for Reelin in stabilizing cortical architecture. Trends Neurosci 33:407–414CrossRefPubMedGoogle Scholar
  25. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460CrossRefPubMedGoogle Scholar
  26. Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonçalves JT, Bloyd CW, Shtrahman M, Johnston ST, Schafer ST, Parylak SL, Tran T, Chang T, Gage FH (2016) In vivo imaging of dendritic pruning in dentate granule cells. Nat Neurosci 19:788–791CrossRefPubMedPubMedCentralGoogle Scholar
  28. Green EJ, Juraska JM (1985) The dendritic morphology of hippocampal dentate granule cells varies with their position in the granule cell layer: a quantitative Golgi study. Exp Brain Res 59:582–586CrossRefPubMedGoogle Scholar
  29. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15:1700–1706CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hsu T-T, Lee C-T, Tai M-H, Lien C-C (2015) Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb Cortex 26:2715–2727CrossRefPubMedGoogle Scholar
  31. Ivanco TL, Racine RJ, Kolb B (2000) Morphology of layer III pyramidal neurons is altered following induction of LTP in sensorimotor cortex of the freely moving rat. Synapse 37:16–22CrossRefPubMedGoogle Scholar
  32. Jedlicka P, Schwarzacher SW, Winkels R, Kienzler F, Frotscher M, Bramham CR, Schultz C, Bas Orth C, Deller T (2009) Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus 19:130–140CrossRefPubMedGoogle Scholar
  33. Jedlicka P, Vnencak M, Krueger DD, Jungenitz T, Brose N, Schwarzacher SW (2015) Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct 220:47–58CrossRefPubMedGoogle Scholar
  34. Johnston ST, Shtrahman M, Parylak S, Gonçalves JT, Gage FH (2016) Paradox of pattern separation and adult neurogenesis: a dual role for new neurons balancing memory resolution and robustness. Neurobiol Learn Mem 129:60–68CrossRefPubMedGoogle Scholar
  35. Jungenitz T, Radic T, Jedlicka P, Schwarzacher SW (2014) High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells. Cereb Cortex 24:1845–1857CrossRefPubMedGoogle Scholar
  36. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362CrossRefPubMedGoogle Scholar
  37. Kempermann G (2015) Activity dependency and aging in the regulation of adult neurogenesis. Cold Spring Harb Perspect Biol 7:a018929CrossRefPubMedGoogle Scholar
  38. Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528CrossRefPubMedGoogle Scholar
  40. Kügler S, Meyn L, Holzmüller H, Gerhardt E, Isenmann S, Schulz JB, Bähr M (2001) Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol Cell Neurosci 17:78–96CrossRefPubMedGoogle Scholar
  41. Kügler S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347CrossRefPubMedGoogle Scholar
  42. Kuroda H, Kutner RH, Bazan NG, Reiser J (2008) A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transfer. J Gene Med 10:1163–1175CrossRefPubMedGoogle Scholar
  43. Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, Gage FH, Schinder AF (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4:e409CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee H, Kang E, Goodsmith D, Yoon DY, Song H, Knierim JJ, Ming G, Christian KM (2015) DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats. Front Syst Neurosci 9:1–8CrossRefGoogle Scholar
  45. Lefebvre JL, Sanes JR, Kay JN (2015) Development of dendritic form and function. Annu Rev Cell Dev Biol 31:741–777CrossRefPubMedGoogle Scholar
  46. Lemaire V, Tronel S, Montaron M-F, Fabre A, Dugast E, Abrous DN (2012) Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci 32:3101–3108CrossRefPubMedGoogle Scholar
  47. Li G, Pleasure SJ (2010) Ongoing interplay between the neural network and neurogenesis in the adult hippocampus. Curr Opin Neurobiol 20:126–133CrossRefPubMedPubMedCentralGoogle Scholar
  48. Llorens-Martín M, Rábano A, Ávila J (2016) The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Front Neurosci 9:1–20CrossRefGoogle Scholar
  49. Loy R, Lynch G, Cotman CW (1977) Development of afferent lamination in the fascia dentata of the rat. Brain Res 121:229–243CrossRefPubMedGoogle Scholar
  50. Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445CrossRefPubMedGoogle Scholar
  51. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366CrossRefPubMedGoogle Scholar
  52. Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335:1238–1242CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mathews EA, Morgenstern NA, Piatti VC, Zhao C, Jessberger S, Schinder AF, Gage FH (2010) A distinctive layering pattern of mouse dentate granule cells is generated by developmental and adult neurogenesis. J Comp Neurol 518:4479–4490CrossRefPubMedPubMedCentralGoogle Scholar
  54. Monfils M-H, Teskey GC (2004) Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53:114–121CrossRefPubMedGoogle Scholar
  55. Mongiat LA, Espósito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLoS One 4:e5320CrossRefPubMedPubMedCentralGoogle Scholar
  56. Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148:593–598CrossRefPubMedGoogle Scholar
  57. Myers CEC, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21:1190–1215CrossRefPubMedGoogle Scholar
  58. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Barrera VR, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201CrossRefPubMedPubMedCentralGoogle Scholar
  59. Norkett R, Modi S, Birsa N, Atkin TA, Ivankovic D, Pathania M, Trossbach SV, Korth C, Hirst WD, Kittler JT (2016) DISC1-dependent regulation of mitochondrial dynamics controls the morphogenesis of complex neuronal dendrites. J Biol Chem 291:613–629CrossRefPubMedGoogle Scholar
  60. Ohkawa N, Saitoh Y, Tokunaga E, Nihonmatsu I, Ozawa F, Murayama A, Shibata F, Kitamura T, Inokuchi K (2012) Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity. PLoS One 7:e45270CrossRefPubMedPubMedCentralGoogle Scholar
  61. Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume R, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S (2010) Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci USA 107:18173–18178CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95:3221–3226CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13CrossRefPubMedPubMedCentralGoogle Scholar
  65. Radic T, Al-Qaisi O, Jungenitz T, Beining M, Schwarzacher SW (2015) Differential structural development of adult-born septal hippocampal granule cells in the Thy1-GFP mouse, nuclear size as a new index of maturation. PLoS One 10:e0135493CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rahimi O, Claiborne BJ (2007) Morphological development and maturation of granule neuron dendrites in the rat dentate gyrus. Prog Brain Res 163:167–181CrossRefPubMedGoogle Scholar
  67. Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–687CrossRefPubMedPubMedCentralGoogle Scholar
  68. Reeves TM, Steward O (1986) Emergence of the capacity for LTP during reinnervation of the dentate gyrus: evidence that abnormally shaped spines can mediate LTP. Exp Brain Res 65:167–175CrossRefPubMedGoogle Scholar
  69. Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35:10600–10612CrossRefPubMedGoogle Scholar
  70. Ribak CE, Shapiro LA (2007) Dendritic development of newly generated neurons in the adult brain. Brain Res Rev 55:390–394CrossRefPubMedGoogle Scholar
  71. Rihn LL, Claiborne BJ (1990) Dendritic growth and regression in rat dentate granule cells during late postnatal development. Dev Brain Res 54:115–124CrossRefGoogle Scholar
  72. Rosenzweig S, Wojtowicz JM (2011) Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites. Front Neurosci 5:34CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441CrossRefPubMedGoogle Scholar
  74. Schneider CJ, Cuntz H, Soltesz I (2014) Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS Comput Biol 10:e1003921CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schuldiner O, Yaron A (2014) Mechanisms of developmental neurite pruning. Cell Mol Life Sci 72:101–119CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schwarzacher S, Vuksic M, Haas C, Burbach G, Sloviter RS, Deller T (2006) Neuronal hyperactivity induces astrocytic expression of neurocan in the adult rat hippocampus. Glia 714:704–714CrossRefGoogle Scholar
  77. Sengupta P (2013) The Laboratory Rat: relating Its Age With Human’s. Int J Prev Med 4:624–630PubMedPubMedCentralGoogle Scholar
  78. Sidiropoulou K, Pissadaki EK, Poirazi P (2006) Inside the brain of a neuron. EMBO Rep 7:886–892CrossRefPubMedPubMedCentralGoogle Scholar
  79. Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J, Schoch S, Becker A, von der Kammer H, Remy S (2014) Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease. Neuron 84:1023–1033CrossRefPubMedGoogle Scholar
  80. St John JL, Rosene DL, Luebke JI (1997) Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J Comp Neurol 387:136–147Google Scholar
  81. Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751CrossRefPubMedGoogle Scholar
  82. Stone SSD, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M, Lozano AM, Frankland PW (2011) Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 21:1348–1362CrossRefPubMedGoogle Scholar
  83. Sun GJ, Sailor KA, Mahmood QA, Chavali N, Christian KM, Song H, Ming G (2013) Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci 33:11400–11411CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tavosanis G (2012) Dendritic structural plasticity. Dev Neurobiol 72:73–86CrossRefPubMedGoogle Scholar
  85. Teixeira CM, Kron MM, Masachs N, Zhang H, Lagace DC, Martinez A, Reillo I, Duan X, Bosch C, Pujadas L, Brunso L, Song H, Eisch AJ, Borrell V, Howell BW, Parent JM, Soriano E (2012) Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 32:12051–12065CrossRefPubMedPubMedCentralGoogle Scholar
  86. Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, Giacomini D, Beltramone N, Lanuza GM, Schinder AF (2014) Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85:116–130CrossRefPubMedPubMedCentralGoogle Scholar
  87. Teskey GC, Monfils M-HH, Silasi G, Kolb B, Young NA, Van Rooyen F, Larson SEM, Flynn C, Monfils M-HH, Kleim JA, Henry LC, Goertzen CD, Silasi G, Kolb B (2006) Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59:1–9CrossRefPubMedGoogle Scholar
  88. Tronel S, Lemaire V, Charrier V, Montaron M-F, Abrous DN (2015) Influence of ontogenetic age on the role of dentate granule neurons. Brain Struct Funct 220:645–661CrossRefPubMedGoogle Scholar
  89. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034CrossRefPubMedGoogle Scholar
  90. Vuksic M, Del Turco D, Bas Orth C, Burbach GJ, Feng G, Müller CM, Schwarzacher SW, Deller T (2008) 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus 18:364–375CrossRefPubMedGoogle Scholar
  91. Vuksic M, Del Turco D, Vlachos A, Schuldt G, Müller CM, Schneider G, Deller T (2011) Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells. Exp Neurol 230:176–185CrossRefPubMedGoogle Scholar
  92. Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM (2008) Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59:84–97CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wilson RC (1981) Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. I. Differences between normal and reinnervated dentate gyrus. J Neurophysiol 46:324–338PubMedGoogle Scholar
  94. Wilson RC, Levy WB, Steward O (1979) Functional effects of lesion-induced plasticity: long term potentiation in formal and lesion-induced temporodentate connections. Brain Res 176:65–78CrossRefPubMedGoogle Scholar
  95. Yu D, Fan W, Wu P, Deng J, Liu J, Niu Y, Li M, Deng J (2014) Characterization of hippocampal Cajal–Retzius cells during development in a mouse model of Alzheimer’s disease (Tg2576). Neural Regen Res 9:394CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Clinical NeuroanatomyGoethe UniversityFrankfurt am MainGermany
  2. 2.Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurt am MainGermany
  3. 3.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany

Personalised recommendations