Brain Structure and Function

, Volume 222, Issue 2, pp 895–921 | Cite as

Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice

  • Hugo Salais-López
  • Enrique Lanuza
  • Carmen Agustín-Pavón
  • Fernando Martínez-García
Original Article

Abstract

Prolactin is fundamental for the expression of maternal behaviour. In virgin female rats, prolactin administered upon steroid hormone priming accelerates the onset of maternal care. By contrast, the role of prolactin in mice maternal behaviour remains unclear. This study aims at characterizing central prolactin activity patterns in female mice and their variation through pregnancy and lactation. This was revealed by immunoreactivity of phosphorylated (active) signal transducer and activator of transcription 5 (pSTAT5-ir), a key molecule in the signalling cascade of prolactin receptors. We also evaluated non-hypophyseal lactogenic activity during pregnancy by administering bromocriptine, which suppresses hypophyseal prolactin release. Late-pregnant and lactating females showed significantly increased pSTAT5-ir resulting in a widespread pattern of immunostaining with minor variations between pregnant and lactating animals, which comprises nuclei of the sociosexual and maternal brain, including telencephalic (septum, nucleus of the stria terminalis, and amygdala), hypothalamic (preoptic, paraventricular, supraoptic, and ventromedial), and midbrain (periaqueductal grey) regions. During late pregnancy, this pattern was not affected by the administration of bromocriptine, suggesting it to be elicited mostly by non-hypophyseal lactogenic agents, likely placental lactogens. Virgin females displayed, instead, a variable pattern of pSTAT5-ir restricted to a subset of the brain nuclei labelled in pregnant and lactating mice. A hormonal substitution experiment confirmed that estradiol and progesterone contribute to the variability found in virgin females. Our results reflect how the shaping of the maternal brain takes place prior to parturition and suggest that lactogenic agents are important candidates in the development of maternal behaviours already during pregnancy.

Keywords

Maternal care Maternal aggression Placental lactogens pSTAT5 CD1 mice Sociosexual brain 

Abbreviations

10N

Dorsal motor nucleus of vagus

12N

Hypoglossal nucleus

3V

Third ventricle

AAD

Anterior amygdaloid area, dorsal part

AAV

Anterior amygdaloid area, ventral part

AC

Anterior commissural nucleus

aca

Anterior commissure, anterior part

AcbC

Accumbens nucleus, core

AcbSh

Accumbens nucleus, shell

ACo

Anterior cortical amygdaloid nucleus

acp

Anterior commissure, posterior part

AD

Anterodorsal thalamic nucleus

ADP

Anterodorsal preoptic nucleus

AHA

Anterior hypothalamic area, anterior part

AHC

Anterior hypothalamic area, central part

AHiAL

Amygdalohippocampal area, anterolateral part

AHiPM

Amygdalohippocampal area, posteromedial part

AHP

Anterior hypothalamic area, posterior part

AP

Area postrema

APT

Anterior pretectal nucleus

Aq

Aqueduct (Sylvius)

Arc

Arcuate hypothalamic nucleus

AVPe

Anteroventral periventricular nucleus

BAC

Bed nucleus of the anterior commissure

Bar

Barrington’s nucleus

BIC

Nucleus of the brachium of the inferior colliculus

bic

Brachium of the inferior colliculus

BLA

Basolateral amygdaloid nucleus, anterior part

BLP

Basolateral amygdaloid nucleus, posterior part

BLV

Basolateral amygdaloid nucleus, ventral part

BMA

Basomedial amygdaloid nucleus, anterior part

BMP

Basomedial amygdaloid nucleus, posterior part

bp

Brachium pontis

BSTIA

Bed nucleus of the stria terminalis, intra-amygdaloid division

BSTLD

Bed nucleus of the stria terminalis, lateral division, dorsal part

BSTLJ

Bed nucleus of the stria terminalis, lateral division, juxtacapsular part

BSTLP

Bed nucleus of the stria terminalis, lateral division, posterior part

BSTLV

Bed nucleus of the stria terminalis, lateral division, ventral part

BSTMA

Bed nucleus of the stria terminalis, medial division, anterior part

BSTMV

Bed nucleus of the stria terminalis, medial division, ventral part

BSTMPI

Bed nucleus of the stria terminalis, medial division, posterointermediate part

BSTMPL

Bed nucleus of the stria terminalis, medial division, posterolateral part

BSTMPM

Bed nucleus of the stria terminalis, medial division, posteromedial part

cc

Corpus callosum

CC

Central canal

CeC

Central amygdaloid nucleus, capsular part

CeL

Central amygdaloid nucleus, lateral division

CeM

Central amygdaloid nucleus, medial division

CeMAD

Central amygdaloid nucleus, medial division, anterodorsal part

CeMAV

Central amygdaloid nucleus, medial division, anterodorsal part

CeMPV

Central amygdaloid nucleus, medial division, posteroventral part

cg

Cingulum

CI

Caudal interstitial nucleus of the medial longitudinal fasciculum

Cir

Circular nucleus

CLi

Caudal linear nucleus of the raphe

CP

Choroid plexus

cp

Cerebral peduncle, basal part

CPu

Caudate putamen (striatum)

Cu

Cuneate nucleus

CxA

Cortex-amygdala transition zone

D3V

Dorsal third ventricle

Den

Dorsal endopiriform nucleus

Dk

Nucleus of Darkschewitsch

DLG

Dorsal lateral geniculate nucleus

DLPAG

Dorsolateral periaqueductal grey

DM

Dorsomedial hypothalamic nucleus

DMPAG

Dorsomedial periaqueductal grey

DMTg

Dorsomedial tegmental area

DP

Dorsal peduncular cortex

DpG

Deep grey layer of the superior colliculus

DpMe

Deep mesencephalic nucleus

DPO

Dorsal periolivary region

DpWh

Deep white layer of the superior colliculus

DR

Dorsal raphe nucleus

DTgC

Dorsal tegmental nucleus, central part

DTT

Dorsal taenia tecta

eml

External medullary lamina

EW

Edinger–Westphal nucleus

f

Fornix

fi

Fimbria of the hippocampus

fmi

Forceps minor of the corpus callosum

fr

Fasciculus retroflexus

HDB

Nucleus of the horizontal limb of the diagonal band

I

Intercalated nuclei of the amygdala

ic

Internal capsule

IF

Interfascicular nucleus

IGL

Intergeniculate leaf

IL

Infralimbic cortex

InC

Interstitial nucleus of Cajal

InCO

Intercollicular nucleus

InG

Intermediate grey layer of the superior colliculus

InWh

Intermediate white layer of the superior colliculus

IP

Interpeduncular nucleus

IPAC

Interstitial nucleus of the posterior limb of the anterior commissure

IRt

Intermediate reticular nucleus

La

Lateral amygdaloid nucleus

LA

Lateroanterior hypothalamic nucleus

LC

Locus coeruleus

Ld

Lambdoid septal zone

LD

Laterodorsal thalamic nucleus

LDTg

Laterodorsal tegmental nucleus

LGP

Lateral globus pallidus

LH

Lateral hypothalamic area

LHb

Lateral habenular nucleus

ll

Lateral lemiscus

lo

Lateral olfactory tract

LOT

Nucleus of the lateral olfactory tract

LP

Lateral posterior thalamic nucleus

LPAG

Lateral periaqueductal grey

LPBC

Lateral parabrachial nucleus, central part

LPBD

Lateral parabrachial nucleus, dorsal part

LPBE

Lateral parabrachial nucleus, external part

LPBI

Lateral parabrachial nucleus, internal part

LPBV

Lateral parabrachial nucleus, ventral part

LPMR

Lateral posterior thalamic nucleus, mediorostral part

LPO

Lateral preoptic area

LRt

Lateral reticular nucleus

LSD

Lateral septal nucleus, dorsal part

LSI

Lateral septal nucleus, intermediate part

LSO

Lateral superior olive

LSV

Lateral septal nucleus, ventral part

LV

Lateral ventricle

MCLH

Magnocellular nucleus of the lateral hypothalamus

mcp

Middle cerebellar peduncle

MCPC

Magnocellular precommissural nucleus

MCPO

Magnocellular preoptic nucleus

MdD

Medullary reticular nucleus, dorsal part

MdV

Medullary reticular nucleus, ventral part

ME

Median eminence

MeA

Medial amygdaloid nucleus, anterior part

MePD

Medial amygdaloid nucleus, posterodorsal part

MePV

Medial amygdaloid nucleus, posteroventral part

MGD

Medial geniculate nucleus, dorsal part

MGM

Medial geniculate nucleus, medial part

MGP

Medial globus pallidus

MGV

Medial geniculate nucleus, ventral part

MHb

Medial habenular nucleus

ml

Medial lemniscus

mlf

Medial longitudinal fasciculus

MnPO

Median preoptic nucleus

MnR

Median raphe nucleus

MPA

Medial preoptic area

MPB

Medial parabrachial nucleus

MPBE

Medial parabrachial nucleus, external part

MPO

Medial preoptic nucleus

MS

Medial septal nucleus

mt

Mammilothalamic tract

MTu

Medial tuberal nucleus

MZMGV

Marginal zone of the medial geniculate

ns

Nigrostriatal bundle

opt

Optic tract

OPT

Olivary pretectal nucleus

OT

Nucleus of the optic tract

ox

Optic chiasm

PAG

Periaqueductal grey

PaLM

Paraventricular nucleus, lateral magnocellular part

PaMM

Paraventricular nucleus, medial magnocellular part

PaPO

Paraventricular nucleus, posterior part

PaV

Paraventricular nucleus, ventral part

PCom

Nucleus of the posterior commissure

Pe

Periventricular hypothalamic nucleus

PeF

Perifornical nucleus

PF

Parafascicular thalamic nucleus

PH

Posterior hypothalamic area

PIL

Posterior-intralaminar thalamic nucleus

Pir

Piriform cortex

PLCo

Posterolateral cortical amygdaloid nucleus

PM

Paramedian lobule

PMD

Premammillary nucleus, dorsal part

PMV

Premammillary nucleus, ventral part

PnC

Pontine reticular nucleus, caudal part

PnO

Pontine reticular nucleus, oral part

PnR

Pontine raphe nucleus

PnV

Pontine reticular nucleus, ventral part

PoT

Posterior thalamic nuclear group, triangular part

PP

Peripeduncular nucleus

PPT

Posterior pretectal nucleus

PPTg

Pedunculopontine tegmental nucleus

Pr5

Principal sensory trigeminal nucleus

PSTh

Parasubthalamic nucleus

PV

Paraventricular thalamic nucleus

PVA

Paraventricular thalamic nucleus, anterior part

py

Pyramidal tract

R

Red nucleus

RCh

Retrochiasmatic area

Re

Reuniens thalamic nucleus

RMg

Raphe magnus nucleus

Rob

Raphe obscurus nucleus

rs

Rubrospinal tract

Rt

Reticular thalamic nucleus

s5

Sensory root of the trigeminal nerve

SCh

Suprachiasmatic nucleus

SCO

Subcommissural organ

scp

Superior cerebellar peduncle

SFi

Septofimbrial nucleus

SFO

Subfornical organ

SG

Suprageniculate thalamic nucleus

SHi

Septohippocampal nucleus

SI

Substantia innominata

SLEA

Sublenticular extended amygdala

sm

Stria medullaris of the thalamus

SN

Substantia nigra

SNC

Substantia nigra, pars compacta

SNR

Substantia nigra, reticular part

SO

Supraoptic nucleus

sol

Solitary tract

Sol

Nucleus of the solitary tract

SolC

Nucleus of the solitary tract, commissural part

SolDL

Nucleus of the solitary tract, dorsolateral part

SolG

Nucleus of the solitary tract, gelatinous part

SolM

Nucleus of the solitary tract, medial part

SolV

Nucleus of the solitary tract, ventral part

Sp5

Spinal trigeminal nucleus

Spa

Subparaventricular zone of the hypothalamus

SPFPC

Subparafascicular thalamic nucleus, parvicellular part

SPO

Superior paraolivary nucleus

st

Stria terminalis

STh

Subthalamic nucleus

str

Superior thalamic radiation

SubB

Subbrachial nucleus

SubCD

Subcoeruleus nucleus, dorsal part

SubCV

Subcoeruleus nucleus, ventral part

SubG

Subgeniculate nucleus

SubI

Subincertal nucleus

SuMM

Supramammillary nucleus, medial part

TC

Tuber cinereum

Te

Terete hypothalamic nucleus

Tu

Olfactory tubercle

VEn

Ventral endopiriform nucleus

VLG

Ventral lateral geniculate nucleus

VLGMC

Ventral lateral geniculate nucleus, magnocellular part

VLGPC

Ventral lateral geniculate nucleus, parvicellular part

VLPAG

Ventrolateral periaqueductal grey

VLPO

Ventrolateral preoptic nucleus

VMH

Ventromedial hypothalamic nucleus

VMHc

Ventromedial hypothalamic nucleus, central part

VMHdm

Ventromedial hypothalamic nucleus, dorsomedial part

VMHvl

Ventromedial hypothalamic nucleus, ventrolateral part

VMPO

Ventromedial preoptic nucleus

VOLT

Vascular organ of the lamina terminalis

VP

Ventral pallidum

VRe

Ventral reuniens thalamic nucleus

vsc

Ventral spinocerebellar tract

VTA

Ventral tegmental area

ZI

Zona incerta

ZID

Zona incerta, dorsal part

ZIV

Zona incerta, ventral part

Supplementary material

429_2016_1254_MOESM1_ESM.pdf (718 kb)
Supplementary material 1 (PDF 718 kb)

References

  1. Anderson GM, Kieser DC, Steyn FJ, Grattan DR (2008) Hypothalamic prolactin receptor messenger ribonucleic acid levels, prolactin signaling, and hyperprolactinemic inhibition of pulsatile luteinizing hormone secretion are dependent on estradiol. Endocrinology 149:1562–1570. doi:10.1210/en.2007-0867 PubMedCrossRefGoogle Scholar
  2. Andrews ZB, Kokay IC, Grattan DR (2001) Dissociation of prolactin secretion from tuberoinfundibular dopamine activity in late pregnant rats. Endocrinology 142:2719–2724. doi:10.1210/en.142.6.2719 PubMedGoogle Scholar
  3. Augustine RA, Ladyman SR, Grattan DR (2008) From feeding one to feeding many: hormone-induced changes in bodyweight homeostasis during pregnancy. J Physiol 586:387–397. doi:10.1113/jphysiol.2007.146316 PubMedCrossRefGoogle Scholar
  4. Bakowska JC, Morrell JI (1997) Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol 386(2):161–177PubMedCrossRefGoogle Scholar
  5. Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22:724–763. doi:10.1210/edrv.22.6.0451 PubMedCrossRefGoogle Scholar
  6. Bennett E, McGuinness L, Gevers EF et al (2005) Hypothalamic STAT proteins: regulation of somatostatin neurones by growth hormone via STAT5b. J Neuroendocrinol 17:186–194. doi:10.1111/j.1365-2826.2005.01296.x PubMedCrossRefGoogle Scholar
  7. Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M et al (1997) The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol Endocrinol 11:1449–1457. doi:10.1210/mend.11.10.9994 PubMedGoogle Scholar
  8. Binart N, Bachelot A, Bouilly J (2010) Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab 21:362–368. doi:10.1016/j.tem.2010.01.008 PubMedCrossRefGoogle Scholar
  9. Bole-feysot C, Goffin V, Edery M et al (1998) Prolactin (PRL) and its receptor: actions, signal PRL receptor knockout mice. Endocr Rev 19:225–268. doi:10.1210/er.19.3.225 PubMedCrossRefGoogle Scholar
  10. Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond B Biol Sci 368:20130085. doi:10.1098/rstb.2013.0085 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31:883–891. doi:10.1111/j.1460-9568.2010.07115.x PubMedCrossRefGoogle Scholar
  12. Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61:293–303. doi:10.1016/j.yhbeh.2011.11.002 PubMedCrossRefGoogle Scholar
  13. Brady JV, Nauta WJ (1953) Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psychol 46:339–346PubMedCrossRefGoogle Scholar
  14. Bridges RS (1994) The role of lactogenic hormones in maternal behavior in female rats. Acta Paediatr Suppl 397:33–39PubMedCrossRefGoogle Scholar
  15. Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196. doi:10.1016/j.yfrne.2014.11.007 PubMedCrossRefGoogle Scholar
  16. Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126:837–848. doi:10.1210/endo-126-2-837 PubMedCrossRefGoogle Scholar
  17. Bridges RS, Numan M, Ronsheim PM et al (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007. doi:10.1073/pnas.87.20.8003 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bridges RS, Robertson MC, Shiu RP et al (1996) Endocrine communication between conceptus and mother: placental lactogen stimulation of maternal behavior. Neuroendocrinology 64:57–64PubMedCrossRefGoogle Scholar
  19. Broida J, Michael SD, Svare B (1981) Plasmin prolactin levels are not related to the initiation, maintenance, and decline of postpartum aggression in mice. Behav Neural Biol 32:121–125PubMedCrossRefGoogle Scholar
  20. Brown RSE, Kokay IC, Herbison AE, Grattan DR (2010) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518:92–102. doi:10.1002/cne.22208 PubMedCrossRefGoogle Scholar
  21. Brown RSE, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836. doi:10.1095/biolreprod.110.089185 PubMedCrossRefGoogle Scholar
  22. Brown RSE, Wyatt AK, Herbison RE et al (2015) Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J. doi:10.1096/fj.15-276519 Google Scholar
  23. Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9:11–25. doi:10.1038/nrn2280 PubMedCrossRefGoogle Scholar
  24. Buonfiglio DC, Ramos-Lobo AM, Silveira MA et al (2015) Neuronal STAT5 signaling is required for maintaining lactation but not for postpartum maternal behaviors in mice. Horm Behav 71:60–68. doi:10.1016/j.yhbeh.2015.04.004 PubMedCrossRefGoogle Scholar
  25. Burton KA, Kabigting EB, Clifton DK, Steiner RA (1992) Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 131:958–963. doi:10.1210/endo.131.2.1353444 PubMedGoogle Scholar
  26. Cádiz-Moretti B, Otero-García M, Martínez-García F, Lanuza E (2016) Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct 221(2):1033–1065. doi:10.1007/s00429-014-0954-y PubMedCrossRefGoogle Scholar
  27. Carvalho-Freitas MIR, Anselmo-Franci JA, Teodorov E et al (2007) Reproductive experience modifies dopaminergic function, serum levels of prolactin, and macrophage activity in female rats. Life Sci 81:128–136. doi:10.1016/j.lfs.2007.04.032 PubMedCrossRefGoogle Scholar
  28. Cservenák M, Bodnár I, Usdin TB et al (2010) Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology 151:5830–5840. doi:10.1210/en.2010-0767 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cservenák M, Szabó ÉR, Bodnár I et al (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084. doi:10.1016/j.psyneuen.2013.09.004 PubMedCrossRefGoogle Scholar
  30. Donadio MVF, Gomes CM, Sagae SC et al (2006) Estradiol and progesterone modulation of angiotensin II receptors in the arcuate nucleus of ovariectomized and lactating rats. Brain Res 1083:103–109. doi:10.1016/j.brainres.2006.02.018 PubMedCrossRefGoogle Scholar
  31. Erskine MS, Barfield RJ, Goldman BD (1980) Postpartum aggression in rats: I. Effects of hypophysectomy. J Comp Physiol Psychol 94:484–494. doi:10.1037/h0077686 PubMedCrossRefGoogle Scholar
  32. Factor EM, Mayer AD, Rosenblatt JS (1993) Peripeduncular nucleus lesions in the rat: I. Effects on maternal aggression, lactation, and maternal behavior during pre- and postpartum periods. Behav Neurosci 107:166–185PubMedCrossRefGoogle Scholar
  33. Fleming AS, Rosenblatt JS (1974) Maternal behavior in the virgin and lactating rat. J Comp Physiol Psychol 86:957–972PubMedCrossRefGoogle Scholar
  34. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631PubMedGoogle Scholar
  35. Furigo IC, Kim KW, Nagaishi VS et al (2014) Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin. Brain Res 1566:47–59. doi:10.1016/j.brainres.2014.04.018 PubMedCrossRefGoogle Scholar
  36. Furigo IC, Metzger M, Teixeira PDS et al (2016) Distribution of growth hormone-responsive cells in the mouse brain. Brain Struct Funct. doi:10.1007/s00429-016-1221-1 PubMedGoogle Scholar
  37. Gammie SC (2005) Current models and future directions for understanding the neural circuitries of maternal behaviors in rodents. Behav Cogn Neurosci Rev 4:119–135. doi:10.1177/1534582305281086 PubMedCrossRefGoogle Scholar
  38. Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427. doi:10.1046/j.1440-1681.2000.03259.x PubMedCrossRefGoogle Scholar
  39. Garland M, Svare B (1988) Suckling stimulation modulates the maintenance of postpartum aggression in mice. Physiol Behav 44:301–305PubMedCrossRefGoogle Scholar
  40. Ghosh R, Sladek CD (1995) Role of prolactin and gonadal steroids in regulation of oxytocin mRNA during lactation. Am J Physiol 269:E76–E84PubMedGoogle Scholar
  41. Gong Y, Ishida-Takahashi R, Villanueva EC et al (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282:31019–31027. doi:10.1074/jbc.M702838200 PubMedCrossRefGoogle Scholar
  42. Goupille O, Daniel N, Bignon C et al (1997) Prolactin signal transduction to milk protein genes: carboxy-terminal part of the prolactin receptor and its tyrosine phosphorylation are not obligatory for JAK2 and STAT5 activation. Mol Cell Endocrinol 127:155–169PubMedCrossRefGoogle Scholar
  43. Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20:752–763. doi:10.1111/j.1365-2826.2008.01736.x PubMedCrossRefGoogle Scholar
  44. Grattan DR, Pi XJ, Andrews ZB et al (2001) Prolactin receptors in the brain during pregnancy and lactation: implications for behavior. Horm Behav 40:115–124. doi:10.1006/hbeh.2001.1698 PubMedCrossRefGoogle Scholar
  45. Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649. doi:10.1111/j.1601-183X.2009.00511.x PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hauser H, Gandelman R (1985) Lever pressing for pups: evidence for hormonal influence upon maternal behavior of mice. Horm Behav 19:454–468PubMedCrossRefGoogle Scholar
  47. Horseman ND, Zhao W, Montecino-Rodriguez E et al (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935. doi:10.1093/emboj/16.23.6926 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klampfl SM, Brunton PJ, Bayerl DS, Bosch OJ (2014) Hypoactivation of CRF receptors, predominantly type 2, in the medial-posterior BNST is vital for adequate maternal behavior in lactating rats. J Neurosci 34:9665–9676. doi:10.1523/JNEUROSCI.4220-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Krebs DL, Hilton DJ (2001) SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19:378–387. doi:10.1634/stemcells.19-5-378 PubMedCrossRefGoogle Scholar
  50. Ladyman SR, Fieldwick DM, Grattan DR (2012) Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction 144:83–90. doi:10.1530/REP-12-0112 PubMedCrossRefGoogle Scholar
  51. Lesueur L, Edery M, Ali S et al (1991) Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc Natl Acad Sci USA 88:824–828PubMedPubMedCentralCrossRefGoogle Scholar
  52. Leypold BG, Yu CR, Leinders-Zufall T et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381. doi:10.1073/pnas.082127599 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lin D, Boyle MP, Dollar P et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226. doi:10.1038/nature09736 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lobie PE, García-Aragón J, Lincoln DT et al (1993) Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res Dev Brain Res 74:225–233PubMedCrossRefGoogle Scholar
  55. Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888. doi:10.1016/S0149-7634(02)00087-8 PubMedCrossRefGoogle Scholar
  56. Lonstein JS, Stern JM (1997) Role of the midbrain periaqueductal gray in maternal nurturance and aggression: c-fos and electrolytic lesion studies in lactating rats. J Neurosci 17:3364–3378PubMedGoogle Scholar
  57. Loundes DD, Bridges RS (1986) Length of prolactin priming differentially affects maternal behavior in female rats. Biol Reprod 34:495–501PubMedCrossRefGoogle Scholar
  58. Lucas BK, Ormandy CJ, Binart N et al (1998) Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139:4102–4107. doi:10.1210/endo.139.10.6243 PubMedCrossRefGoogle Scholar
  59. Ma FY, Anderson GM, Gunn TD et al (2005) Prolactin specifically activates signal transducer and activator of transcription 5b in neuroendocrine dopaminergic neurons. Endocrinology 146:5112–5119. doi:10.1210/en.2005-0770 PubMedCrossRefGoogle Scholar
  60. Maeda T, Ikegami H, Sakata M et al (1996) Intraventricular administration of estradiol modulates rat prolactin secretion and synthesis. J Endocrinol Invest 19:586–592. doi:10.1007/BF03349022 PubMedCrossRefGoogle Scholar
  61. Mangurian LP, Walsh RJ, Posner BI (1992) Prolactin enhancement of its own uptake at the choroid plexus. Endocrinology 131:698–702. doi:10.1210/endo.131.2.1639017 PubMedGoogle Scholar
  62. Mann M, Michael SD, Svare B (1980) Ergot drugs suppress plasma prolactin and lactation but not aggression in parturient mice. Horm Behav 14:319–328PubMedCrossRefGoogle Scholar
  63. Mann MA, Konen C, Svare B (1984) The role of progesterone in pregnancy-induced aggression in mice. Horm Behav 18:140–160PubMedCrossRefGoogle Scholar
  64. Markoff E, Talamantes F (1981) Serum placental lactogen in mice in relation to day of gestation and number of conceptuses. Biol Reprod 24:846–851. doi:10.1095/biolreprod24.4.846 PubMedCrossRefGoogle Scholar
  65. Martinez-Ferre A, Martinez S (2012) Molecular regionalization of the diencephalon. Front Neurosci 6:73. doi:10.3389/fnins.2012.00073 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Martín-Sánchez A, McLean L, Beynon RJ et al (2015a) From sexual attraction to maternal aggression: when pheromones change their behavioural significance. Horm Behav 68C:65–76. doi:10.1016/j.yhbeh.2014.08.007 CrossRefGoogle Scholar
  67. Martín-Sánchez A, Valera-Marín G, Hernández-Martínez A et al (2015b) Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Front Behav Neurosci 9:197. doi:10.3389/fnbeh.2015.00197 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Matthews J, Almlöf T, Kietz S et al (2005) Estrogen receptor-alpha regulates SOCS-3 expression in human breast cancer cells. Biochem Biophys Res Commun 335:168–174. doi:10.1016/j.bbrc.2005.07.057 PubMedCrossRefGoogle Scholar
  69. Mayer AD, Monroy MA, Rosenblatt JS (1990) Prolonged estrogen-progesterone treatment of nonpregnant ovariectomized rats: factors stimulating home-cage and maternal aggression and short-latency maternal behavior. Horm Behav 24:342–364PubMedCrossRefGoogle Scholar
  70. Mütze J, Roth J, Gerstberger R, Hübschle T (2007) Nuclear translocation of the transcription factor STAT5 in the rat brain after systemic leptin administration. Neurosci Lett 417:286–291. doi:10.1016/j.neulet.2007.02.074 PubMedCrossRefGoogle Scholar
  71. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257. doi:10.1111/j.1749-6632.1999.tb09271.x PubMedCrossRefGoogle Scholar
  72. Nogami H, Hoshino R, Ogasawara K et al (2007) Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland. J Neuroendocrinol 19:583–593. doi:10.1111/j.1365-2826.2007.01565.x PubMedCrossRefGoogle Scholar
  73. Numan M, Insel TR (2003) The Neurobiology of Parental Behavior. Springer, New YorkGoogle Scholar
  74. Numan M, Woodside B (2010) Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behav Neurosci 124:715–741. doi:10.1037/a0021548 PubMedCrossRefGoogle Scholar
  75. Otero-Garcia M, Martin-Sanchez A, Fortes-Marco L et al (2014) Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Struct Funct 219:1055–1081. doi:10.1007/s00429-013-0553-3 PubMedCrossRefGoogle Scholar
  76. Otero-García M, Agustín-Pavón C, Lanuza E, Martínez-García F (2015) Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct. doi:10.1007/s00429-015-1111-y PubMedGoogle Scholar
  77. Pardo-Bellver C, Cádiz-Moretti B, Novejarque A et al (2012) Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 6:1–26. doi:10.3389/fnana.2012.00033 CrossRefGoogle Scholar
  78. Parkening TA, Collins TJ, Smith ER (1982) Plasma and pituitary concentrations of luteinizing hormone, follicle-stimulating hormone and prolactin in aged, ovariectomized CD-1 and C57BL/6 mice. Exp Gerontol 17:437–443PubMedCrossRefGoogle Scholar
  79. Parker SL, Armstrong WE, Sladek CD et al (1991) Prolactin stimulates the release of oxytocin in lactating rats: evidence for a physiological role via an action at the neural lobe. Neuroendocrinology 53:503–510PubMedCrossRefGoogle Scholar
  80. Parmigiani S, Palanza P, Rodgers J, Ferrari PF (1999) Selection, evolution of behavior and animal models in behavioral neuroscience. Neurosci Biobehav Rev 23:957–970. doi:10.1016/S0149-7634(99)00029-9 PubMedCrossRefGoogle Scholar
  81. Paut-Pagano L, Roky R, Valatx JL et al (1993) Anatomical distribution of prolactin-like immunoreactivity in the rat brain. Neuroendocrinology 58:682–695PubMedCrossRefGoogle Scholar
  82. Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  83. Rissman EF, Early AH, Taylor JA et al (1997) Estrogen receptors are essential for female sexual receptivity. Endocrinology 138:507–510. doi:10.1210/endo.138.1.4985 PubMedCrossRefGoogle Scholar
  84. Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519:2434–2474. doi:10.1002/cne.22635 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sapsford TJ, Kokay IC, Östberg L et al (2012) Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol 520:1062–1077. doi:10.1002/cne.22775 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sauvé D, Woodside B (2000) Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res 868:306–314PubMedCrossRefGoogle Scholar
  87. Scott N, Prigge M, Yizhar O, Kimchi T (2015) A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525:519–522. doi:10.1038/nature15378 PubMedCrossRefGoogle Scholar
  88. Scully KM, Gleiberman AS, Lindzey J et al (1997) Role of estrogen receptor-alpha in the anterior pituitary gland. Mol Endocrinol 11:674–681. doi:10.1210/mend.11.6.0019 PubMedGoogle Scholar
  89. Sinha YN, Salocks CB, Wickes MA, Vanderlaan WP (1977) Serum and pituitary concentrations of prolactin and growth hormone in mice during a twenty-four hour period. Endocrinology 100:786–791. doi:10.1210/endo-100-3-786 PubMedCrossRefGoogle Scholar
  90. Sirzen-Zelenskaya A, Gonzalez-Iglesias AE, Boutet de Monvel J et al (2011) Prolactin induces a hyperpolarising current in rat paraventricular oxytocinergic neurons. J Neuroendocrinol 23:883–893. doi:10.1111/j.1365-2826.2011.02207.x PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sjoeholm A, Bridges RS, Grattan DR, Anderson GM (2011) Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 152:1979–1988. doi:10.1210/en.2010-1220 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Slotnick BM, Carpenter ML, Fusco R (1973) Initiation of maternal behavior in pregnant nulliparous rats. Horm Behav 4:53–59. doi:10.1016/0018-506X(73)90016-0 CrossRefGoogle Scholar
  93. Soares MJ (2004) The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2:51. doi:10.1186/1477-7827-2-51 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Soares MJ, Müller H, Orwig KE et al (1998) The uteroplacental prolactin family and pregnancy. Biol Reprod 58:273–284PubMedCrossRefGoogle Scholar
  95. Stern JM, Kolunie JM (1993) Maternal aggression of rats is impaired by cutaneous anesthesia of the ventral trunk, but not by nipple removal. Physiol Behav 54:861–868PubMedCrossRefGoogle Scholar
  96. Stolzenberg DS, Rissman EF (2011) Oestrogen-independent, experience-induced maternal behaviour in female mice. J Neuroendocrinol 23:345–354. doi:10.1111/j.1365-2826.2011.02112.x PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sugiyama T, Minoura H, Kawabe N et al (1994) Preferential expression of long form prolactin receptor mRNA in the rat brain during the oestrous cycle, pregnancy and lactation: hormones involved in its gene expression. J Endocrinol 141:325–333PubMedCrossRefGoogle Scholar
  98. Torner L, Toschi N, Nava G et al (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389. doi:10.1046/j.1460-9568.2002.01965.x PubMedCrossRefGoogle Scholar
  99. Toth M, Fuzesi T, Halasz J et al (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20. doi:10.1016/j.bbr.2010.05.050 PubMedCrossRefGoogle Scholar
  100. Tsuneoka Y, Maruyama T, Yoshida S et al (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521:1633–1663. doi:10.1002/cne.23251 PubMedCrossRefGoogle Scholar
  101. Unger EK, Burke KJ, Yang CF et al (2015) Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 10:453–462. doi:10.1016/j.celrep.2014.12.040 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vaisse C, Halaas JL, Horvath CM et al (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 14:95–97. doi:10.1038/ng0996-95 PubMedCrossRefGoogle Scholar
  103. Wang Z, Storm DR (2011) Maternal behavior is impaired in female mice lacking type 3 adenylyl cyclase. Neuropsychopharmacology 36:772–781. doi:10.1038/npp.2010.211 PubMedCrossRefGoogle Scholar
  104. Waters MJ (2015) The growth hormone receptor. Growth Horm IGF Res. doi:10.1016/j.ghir.2015.06.001 PubMedGoogle Scholar
  105. Weiss J, Pyrski M, Jacobi E et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–190. doi:10.1038/nature09975 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wise DA, Pryor TL (1977) Effects of ergocornine and prolactin on aggression in the postpartum golden hamster. Horm Behav 8:30–39PubMedCrossRefGoogle Scholar
  107. Yip SH, Eguchi R, Grattan DR, Bunn SJ (2012) Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a. J Neuroendocrinol 24:1484–1491. doi:10.1111/j.1365-2826.2012.02357.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hugo Salais-López
    • 1
  • Enrique Lanuza
    • 2
  • Carmen Agustín-Pavón
    • 1
  • Fernando Martínez-García
    • 1
  1. 1.Unitat Predepartamental de Medicina, Facultat de Ciències de la SalutUniversitat Jaume ICastelló de la PlanaSpain
  2. 2.Departaments de Biologia Cel·lular i Biologia Funcional, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotSpain

Personalised recommendations