Advertisement

Brain Structure and Function

, Volume 222, Issue 2, pp 799–812 | Cite as

The association of children’s mathematic abilities with both adults’ cognitive abilities and intrinsic fronto-parietal networks is altered in preterm-born individuals

  • J. G. Bäuml
  • C. Meng
  • M. Daamen
  • N. Baumann
  • B. Busch
  • P. Bartmann
  • D. Wolke
  • H. Boecker
  • A. Wohlschläger
  • C. Sorg
  • Julia JaekelEmail author
Original Article

Abstract

Mathematic abilities in childhood are highly predictive for long-term neurocognitive outcomes. Preterm-born individuals have an increased risk for both persistent cognitive impairments and long-term changes in macroscopic brain organization. We hypothesized that the association of childhood mathematic abilities with both adulthood general cognitive abilities and associated fronto-parietal intrinsic networks is altered after preterm delivery. 72 preterm- and 71 term-born individuals underwent standardized mathematic and IQ testing at 8 years and resting-state fMRI and full-scale IQ testing at 26 years of age. Outcome measure for intrinsic networks was intrinsic functional connectivity (iFC). Controlling for IQ at age eight, mathematic abilities in childhood were significantly stronger positively associated with adults’ IQ in preterm compared with term-born individuals. In preterm-born individuals, the association of children’s mathematic abilities and adults’ fronto-parietal iFC was altered. Likewise, fronto-parietal iFC was distinctively linked with preterm- and term-born adults’ IQ. Results provide evidence that preterm birth alters the link of mathematic abilities in childhood and general cognitive abilities and fronto-parietal intrinsic networks in adulthood. Data suggest a distinct functional role of intrinsic fronto-parietal networks for preterm individuals with respect to mathematic abilities and that these networks together with associated children’s mathematic abilities may represent potential neurocognitive targets for early intervention.

Keywords

IQ in adulthood Mathematic abilities in childhood Fronto-parietal intrinsic networks Preterm birth 

Notes

Acknowledgments

We thank all current and former members of the Bavarian Longitudinal Study Group who contributed to general study organization, recruitment, and data collection, management and subsequent analyses, including (in alphabetical order): Stephan Czeschka, Claudia Grünzinger, Christian Koch, Diana Kurze, Sonja Perk, Andrea Schreier, Antje Strasser, Julia Trummer, and Eva van Rossum. Most importantly, we thank all our study participants for their efforts to take part in this study.

Compliance with ethical standards

Conflict of interest

All authors report no biomedical financial interests or potential conflicts of interest.

Funding

This study was supported by the German Research Foundation (DFG JA 1913/2-1 to J. J.), the German Federal Ministry of Education and Science (BMBF 01ER0801 to N.B. and D.W., BMBF 01EV0710 to A.M.W., BMBF 01ER0803 to C.S.) and the Kommission für Klinische Forschung, Technische Universität München (KKF 8765162 to C.S). We are grateful to the staff of the Department of Neuroradiology in Munich and the Department of Radiology in Bonn for their help in data collection.

Supplementary material

429_2016_1247_MOESM1_ESM.docx (827 kb)
Supplementary material 1 (DOCX 827 kb)

References

  1. Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J (2009) Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124(2):717–728CrossRefPubMedGoogle Scholar
  2. Aarnoudse-Moens CSH, Weisglas-Kuperus N, Duivenvoorden HJ, van Goudoever JB, Oosterlaan J (2013) Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS One 8(2):e55994CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alavash M, Doebler P, Holling H, Thiel CM, Gießing C (2015) Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? Neuroimage 108:182–193CrossRefPubMedGoogle Scholar
  4. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. doi: 10.3389/fnsys.2011.00002 Google Scholar
  5. Allin M, Walshe M, Fern A, Nosarti C, Cuddy M, Rifkin L, Murray R, Rushe T, Wyatt J (2008) Cognitive maturation in preterm and term born adolescents. J Neurol Neurosurg Psychiatry 79(4):381–386. doi: 10.1136/jnnp.2006.110858 CrossRefPubMedGoogle Scholar
  6. Allin MP, Kontis D, Walshe M, Wyatt J, Barker GJ, Kanaan RA, McGuire P, Rifkin L, Murray RM, Nosarti C (2011) White matter and cognition in adults who were born preterm. PLoS One 6(10):e24525CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson V, Spencer-Smith M, Leventer R, Coleman L, Anderson P, Williams J, Greenham M, Jacobs R (2009) Childhood brain insult: can age at insult help us predict outcome? Brain 132(1):45–56CrossRefPubMedGoogle Scholar
  8. Anderson V, Spencer-Smith M, Wood A (2011) Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 134(8):2197–2221CrossRefPubMedGoogle Scholar
  9. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018 CrossRefPubMedGoogle Scholar
  10. Back SA, Rosenberg PA (2014) Pathophysiology of glia in perinatal white matter injury. Glia 62(11):1790–1815CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ball G, Boardman JP, Rueckert D, Aljabar P, Arichi T, Merchant N, Gousias IS, Edwards AD, Counsell SJ (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex 22(5):1016–1024. doi: 10.1093/cercor/bhr176 CrossRefPubMedGoogle Scholar
  12. Bauer A (1988) Ein Verfahren zur Messung des für das Bildungsverhalten relevanten Sozial Status (BRSS) - überarbeitete Fassung. Frankfurt: Deutsches Institut für Internationale Pädagogische ForschungGoogle Scholar
  13. Bäuml JG, Daamen M, Meng C, Neitzel J, Scheef L, Jaekel J, Busch B, Baumann N, Bartmann P, Wolke D, Boecker H, Wohlschlager AM, Sorg C (2014) Correspondence between aberrant intrinsic network connectivity and gray-matter volume in the ventral brain of preterm born adults. Cereb Cortex. doi: 10.1093/cercor/bhu133 Google Scholar
  14. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013. doi: 10.1098/rstb.2005.1634 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bourgeois J-P, Jastreboff PJ, Rakic P (1989) Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. Proc Natl Acad Sci 86(11):4297–4301CrossRefPubMedPubMedCentralGoogle Scholar
  16. Breeman L, Jaekel J, Baumann N, Bartmann P, Wolke D (2015) Preterm cognitive function into adulthood. Pediatrics. doi: 10.1542/peds.2015-0608 PubMedGoogle Scholar
  17. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290. doi: 10.1016/j.tics.2010.04.004 CrossRefPubMedGoogle Scholar
  18. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci 9(2):110–122CrossRefPubMedGoogle Scholar
  19. Casey B, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9(3):104–110CrossRefPubMedGoogle Scholar
  20. Clements DH, Sarama J (2011) Early childhood mathematics intervention. Science 333(6045):968–970CrossRefPubMedGoogle Scholar
  21. Damaraju E, Phillips JR, Lowe JR, Ohls R, Calhoun VD, Caprihan A (2010) Resting-state functional connectivity differences in premature children. Front Syst Neurosci. doi: 10.3389/fnsys.2010.00023 PubMedPubMedCentralGoogle Scholar
  22. Dastjerdi M, Ozker M, Foster BL, Rangarajan V, Parvizi J (2013) Numerical processing in the human parietal cortex during experimental and natural conditions. Nat Commun 4:2528. doi: 10.1038/ncomms3528
  23. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20(3–6):487–506CrossRefPubMedGoogle Scholar
  24. Duchek JM, Balota DA, Thomas JB, Snyder AZ, Rich P, Benzinger TL, Fagan AM, Holtzman DM, Morris JC, Ances BM (2013) Relationship between Stroop performance and resting state functional connectivity in cognitively normal older adults. Neuropsychology 27(5):516CrossRefPubMedGoogle Scholar
  25. Duncan GJ, Dowsett CJ, Claessens A, Magnuson K, Huston AC, Klebanov P, Pagani LS, Feinstein L, Engel M, Brooks-Gunn J (2007) School readiness and later achievement. Dev Psychol 43(6):1428CrossRefPubMedGoogle Scholar
  26. Eikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK (2011) Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage 54(3):1774–1785. doi: 10.1016/j.neuroimage.2010.10.037 CrossRefPubMedGoogle Scholar
  27. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32(12):2075–2095. doi: 10.1002/hbm.21170 CrossRefPubMedGoogle Scholar
  28. Eryigit Madzwamuse S, Baumann N, Jaekel J, Bartmann P, Wolke D (2014) Neuro‐cognitive performance of very preterm or very low birth weight adults at 26 years. J Child Psychol Psychiatry 56:857–864. doi: 10.1111/jcpp.12358
  29. Eyre JA (2003) Developmental plasticity of the corticospinal system. In: Boniface S, Ziemann U (eds) Plasticity in the human brain: investigations with transcranial magnetic brain stimulation, Cambridge UP, Cambridge, pp 62–89 Google Scholar
  30. Finke K, Neitzel J, Bäuml JG, Redel P, Müller HJ, Meng C, Jaekel J, Daamen M, Scheef L, Busch B (2015) Visual attention in preterm born adults: specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode. Neuroimage 107:95–106CrossRefPubMedGoogle Scholar
  31. Fischi-Gómez E, Vasung L, Meskaldji D-E, Lazeyras F, Borradori-Tolsa C, Hagmann P, Barisnikov K, Thiran J-P, Hüppi PS (2015) Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex 25(9):2793–2805CrossRefPubMedGoogle Scholar
  32. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. doi: 10.1038/nrn2201 CrossRefPubMedGoogle Scholar
  33. Geary DC (2013) Early foundations for mathematics learning and their relations to learning disabilities. Curr Dir Psychol Sci 22(1):23–27CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia: local diagnostic value. Arch Neurol Psychiatry 44(2):398–408CrossRefGoogle Scholar
  35. Grunewaldt KH, Løhaugen GCC, Austeng D, Brubakk A-M, Skranes J (2013) Working memory training improves cognitive function in VLBW preschoolers. Pediatrics 131(3):e747–e754CrossRefPubMedGoogle Scholar
  36. Grunewaldt KH, Skranes J, Brubakk AM, Lähaugen GC (2015) Computerized working memory training has positive long‐term effect in very low birthweight preschool children. Dev Med Child Neurol 58:195–201. doi: 10.1111/dmcn.12841
  37. Gutbrod T, Wolke D, Soehne B, Ohrt B, Riegel K (2000) Effects of gestation and birth weight on the growth and development of very low birthweight small for gestational age infants: a matched group comparison. Arch Dis Child Fetal Neonatal Ed 82(3):208–214CrossRefGoogle Scholar
  38. Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N (2002) Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 346(3):149–157. doi: 10.1056/NEJMoa010856 CrossRefPubMedGoogle Scholar
  39. Hubbard EM, Piazza M, Pinel P, Dehaene S (2005) Interactions between number and space in parietal cortex. Nat Rev Neurosci 6(6):435–448CrossRefPubMedGoogle Scholar
  40. Isaacs E, Edmonds C, Lucas A, Gadian D (2001) Calculation difficulties in children of very low birthweight. Brain 124(9):1701–1707CrossRefPubMedGoogle Scholar
  41. Jaekel J, Wolke D (2014) Preterm birth and dyscalculia. J Pediatrics 164(6):1327–1332CrossRefGoogle Scholar
  42. Jaekel J, Bartmann P, Schneider W, Wolke D (2014a) Neurodevelopmental pathways to preterm children’s specific and general mathematic abilities. Early Hum Dev 90(10):639–644. doi: 10.1016/j.earlhumdev.2014.07.015 CrossRefPubMedGoogle Scholar
  43. Jaekel J, Pluess M, Belsky J, Wolke D (2014b) Effects of maternal sensitivity on low birth weight children’s academic achievement: a test of differential susceptibility versus diathesis stress. J Child Psychol Psychiatry 56:693–701. doi: 10.1111/jcpp.12331
  44. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39(4):1666–1681CrossRefPubMedGoogle Scholar
  45. Kapellou O, Counsell SJ, Kennea N, Dyet L, Saeed N, Stark J, Maalouf E, Duggan P, Ajayi-Obe M, Hajnal J (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3(8):e265CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kaufman AS, Kaufman NL (1983) Kaufman assessment battery for children. John Wiley & Sons, New YorkGoogle Scholar
  47. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30(12):3865–3886. doi: 10.1002/hbm.20813 CrossRefPubMedGoogle Scholar
  48. Kostović I, Jovanov-Milošević N, Radoš M, Sedmak G, Benjak V, Kostović-Srzentić M, Vasung L, Čuljat M, Radoš M, Hüppi P (2014a) Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 219(1):231–253CrossRefPubMedGoogle Scholar
  49. Kostović I, Kostović-Srzentić M, Benjak V, Jovanov-Milošević N, Radoš M, Clowry GJ, McFadden K (2014b) Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol 5:139. doi: 10.3389/fneur.2014.00139
  50. Koyama MS, Di Martino A, Zuo X-N, Kelly C, Mennes M, Jutagir DR, Castellanos FX, Milham MP (2011) Resting-state functional connectivity indexes reading competence in children and adults. J Neurosci 31(23):8617–8624CrossRefPubMedPubMedCentralGoogle Scholar
  51. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23(12):4022–4037. doi: 10.1162/jocn_a_00077 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Løhaugen GC, Antonsen I, Håberg A, Gramstad A, Vik T, Brubakk A-M, Skranes J (2011) Computerized working memory training improves function in adolescents born at extremely low birth weight. J Pediatrics 158(4):555–561 (e554) CrossRefGoogle Scholar
  53. Martin A, Barnes KA, Stevens WD (2012) Spontaneous neural activity predicts individual differences in performance. Proc Natl Acad Sci USA 109(9):3201–3202. doi: 10.1073/pnas.1200329109 CrossRefPubMedPubMedCentralGoogle Scholar
  54. McCarton CM, Brooks-Gunn J, Wallace IF, Bauer CR, Bennett FC, Bernbaum JC, Broyles RS, Casey PH, McCormick MC, Scott DT (1997) Results at age 8 years of early intervention for low-birth-weight premature infants: the infant health and development program. JAMA 277(2):126–132CrossRefPubMedGoogle Scholar
  55. McCormick MC, Brooks-Gunn J, Buka SL, Goldman J, Yu J, Salganik M, Scott DT, Bennett FC, Kay LL, Bernbaum JC (2006) Early intervention in low birth weight premature infants: results at 18 years of age for the infant health and development program. Pediatrics 117(3):771–780CrossRefPubMedGoogle Scholar
  56. Melby-Lervåg M, Hulme C (2013) Is working memory training effective? A meta-analytic review. Dev Psychol 49(2):270CrossRefPubMedGoogle Scholar
  57. Melchers P, Preuss U (1991) Kaufman assessment battery for children. Deutschsprachige Fassung Swets und Zeitlinger, FrankfurtGoogle Scholar
  58. Meng C, Brandl F, Tahmasian M, Shao J, Manoliu A, Scherr M, Schwerthoffer D, Bauml J, Forstl H, Zimmer C, Wohlschlager AM, Riedl V, Sorg C (2013) Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain 137(2):598–609. doi: 10.1093/brain/awt290 CrossRefPubMedGoogle Scholar
  59. Meng C, Bäuml J, Daamen M, Jaekel J, Neitzel J, Scheef L, Busch B, Baumann N, Boecker H, Zimmer C (2015) Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Struct Funct 221(4):2109–2121. doi: 10.1007/s00429-015-1032-9
  60. Menon V (2010) Developmental cognitive neuroscience of arithmetic: implications for learning and education. ZDM 42(6):515–525CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595CrossRefPubMedPubMedCentralGoogle Scholar
  62. Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 34(2):565–574. doi: 10.1016/j.neuroimage.2006.09.032 CrossRefPubMedGoogle Scholar
  63. Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, Pugh KR, Katz KH, Schneider KC, Makuch RW, Constable RT, Ment LR (2010) Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage 51(4):1445–1452. doi: 10.1016/j.neuroimage.2010.03.049 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nagy Z, Ashburner J, Andersson J, Jbabdi S, Draganski B, Skare S, Bohm B, Smedler AC, Forssberg H, Lagercrantz H (2009) Structural correlates of preterm birth in the adolescent brain. Pediatrics 124(5):e964–e972. doi: 10.1542/peds.2008-3801 CrossRefPubMedGoogle Scholar
  65. Nordhov SM, Rønning JA, Dahl LB, Ulvund SE, Tunby J, Kaaresen PI (2010) Early intervention improves cognitive outcomes for preterm infants: randomized controlled trial. Pediatrics 126(5):e1088–e1094CrossRefPubMedGoogle Scholar
  66. Nosarti C, Giouroukou E, Healy E, Rifkin L, Walshe M, Reichenberg A, Chitnis X, Williams SC, Murray RM (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain 131(Pt 1):205–217. doi: 10.1093/brain/awm282 PubMedGoogle Scholar
  67. Orton J, Spittle A, Doyle L, Anderson P, Boyd R (2009) Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Dev Med Child Neurol 51(11):851–859. doi: 10.1111/j.1469-8749.2009.03414.x CrossRefPubMedGoogle Scholar
  68. Penn AA, Gressens P, Fleiss B, Back SA, Gallo V (2015) Controversies in preterm brain injury. Neurobiol Dis 92(Pt A):90–101. doi: 10.1016/j.nbd.2015.10.012
  69. Pitcher JB, Riley AM, Doeltgen SH, Kurylowicz L, Rothwell JC, McAllister SM, Smith AE, Clow A, Kennaway DJ, Ridding MC (2012) Physiological evidence consistent with reduced neuroplasticity in human adolescents born preterm. J Neurosci 32(46):16410–16416CrossRefPubMedGoogle Scholar
  70. Prechtl HF (1967) Neurological sequelae of prenatal and perinatal complications. Br Med J 4(5582):763–767CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pyhälä R (2012) Psychological and psychophysiological functioning of young adults born preterm: The Helsinki Study of Very Low Birth Weight Adults. Dissertation, University of HelsinkiGoogle Scholar
  72. Riegel K, Orth B, Wolke D, Osterlund K (1995) Die Entwicklung gefährdet geborener Kinder bis zum 5 Lebensjahr. Thieme, StuttgartGoogle Scholar
  73. Ritchie SJ, Bates TC (2013) Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychol Sci 24(7):1301–1308. doi: 10.1177/0956797612466268 CrossRefPubMedGoogle Scholar
  74. Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17(3):341–346. doi: 10.1038/nn.3604 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, Pugh KR, Makuch RW, Reiss AL, Constable RT, Ment LR (2009) Alterations in functional connectivity for language in prematurely born adolescents. Brain 132(Pt 3):661–670. doi: 10.1093/brain/awn353 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808. doi: 10.1371/journal.pcbi.1000808 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Simms V, Cragg L, Gilmore C, Marlow N, Johnson S (2013) Mathematics difficulties in children born very preterm: current research and future directions. Arch Dis Child Fetal Neonatal Ed 98(5):F457–F463CrossRefPubMedGoogle Scholar
  78. Simms V, Gilmore C, Cragg L, Clayton S, Marlow N, Johnson S (2014) Nature and origins of mathematics difficulties in very preterm children: a different etiology than developmental dyscalculia. Pediatr Res 77(2):389–395CrossRefPubMedGoogle Scholar
  79. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045. doi: 10.1073/pnas.0905267106 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, He Y, Yan C-G, Zang Y-F (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6(9):e25031CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104(47):18760–18765. doi: 10.1073/pnas.0708803104 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Supekar K, Swigart AG, Tenison C, Jolles DD, Rosenberg-Lee M, Fuchs L, Menon V (2013) Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proc Natl Acad Sci 110(20):8230–8235CrossRefPubMedPubMedCentralGoogle Scholar
  83. Taylor HG, Espy K, Anderson PJ (2009) Mathematics deficiencies in children with very low birth weight or very preterm birth. Dev Disabil Res Rev 15(1):52–59. doi: 10.1002/ddrr.51
  84. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1):431–438. doi: 10.1016/j.neuroimage.2011.07.044 CrossRefPubMedGoogle Scholar
  85. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86. doi: 10.1038/nature05758 CrossRefPubMedGoogle Scholar
  86. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124. doi: 10.1016/s1474-4422(08)70294-1 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Von Aster M, Neubauer A, Horn R (2006) Wechsler Intelligenztest für Erwachsene (WIE). Deutschsprachige Bearbeitung und Adaptation des WAIS-III von David Wechsler. Harcourt Test Services, FrankfurtGoogle Scholar
  88. White TP, Symington I, Castellanos NP, Brittain PJ, Froudist Walsh S, Nam KW, Sato JR, Allin MP, Shergill SS, Murray RM, Williams SC, Nosarti C (2014) Dysconnectivity of neurocognitive networks at rest in very-preterm born adults. Neuroimage Clin 4:352–365. doi: 10.1016/j.nicl.2014.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wilke M, Hauser TK, Krageloh-Mann I, Lidzba K (2013) Specific impairment of functional connectivity between language regions in former early preterms. Hum Brain Mapp. doi: 10.1002/hbm.22408 Google Scholar
  90. Wolke D, Meyer R (1999) Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: the Bavarian Longitudinal Study. Dev Med Child Neurol 41(2):94–109CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. G. Bäuml
    • 1
    • 2
    • 9
  • C. Meng
    • 1
    • 2
  • M. Daamen
    • 3
    • 4
  • N. Baumann
    • 5
  • B. Busch
    • 4
  • P. Bartmann
    • 4
  • D. Wolke
    • 5
    • 6
  • H. Boecker
    • 3
  • A. Wohlschläger
    • 1
    • 2
  • C. Sorg
    • 1
    • 2
    • 8
  • Julia Jaekel
    • 5
    • 7
    • 10
    Email author
  1. 1.Department of NeuroradiologyKlinikum rechts Der Isar, Technische Universität MünchenMunichGermany
  2. 2.TUM-NIC Neuroimaging Center Technische Universität MünchenMunichGermany
  3. 3.Functional Neuroimaging Group, Department of RadiologyUniversity Hospital BonnBonnGermany
  4. 4.Department of NeonatologyUniversity Hospital BonnBonnGermany
  5. 5.Department of PsychologyUniversity of WarwickCoventryUK
  6. 6.Warwick Medical SchoolUniversity of WarwickCoventryUK
  7. 7.Department of Child and Family StudiesUniversity of TennesseeKnoxvilleUSA
  8. 8.Department of PsychiatryKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  9. 9.Institute of Medical PsychologyLudwig-Maximilians-Universität MünchenMunichGermany
  10. 10.Department of Developmental PsychologyRuhr-University BochumBochumGermany

Personalised recommendations