Brain Structure and Function

, Volume 222, Issue 2, pp 781–798 | Cite as

Maternally involved galanin neurons in the preoptic area of the rat

  • Melinda Cservenák
  • Viktor Kis
  • Dávid Keller
  • Diána Dimén
  • Lilla Menyhárt
  • Szilvia Oláh
  • Éva R. Szabó
  • János Barna
  • Éva Renner
  • Ted B. Usdin
  • Arpád Dobolyi
Original Article


Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.


Maternal behavior Rat dams Suckling Prolactin Oxytocin Innervation Preoptic area of hypothalamus 



Grant support was provided by HAS Postdoctoral Research Fellowship Program for MCs, OTKA K100319, OTKA K116538 and KTIA_NAP_B_13-2-2014-0004 Program for AD, and NIMH IRP for TBU. The technical assistance of Nikolett Hanák and Szilvia Deák is also acknowledged. The authors also thank Cintia K Finszter for technical contribution to pSTAT5 immunohistochemistry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2016_1246_MOESM1_ESM.tif (5.9 mb)
Supplementary fig. 1. Oxytocin neurons in sagittal plane. A: Schematic drawing of the rat brain 0.4 mm lateral from the bregma (Paxinos and Watson 1997). The framed area corresponds to B. The positions of the anterior commissural nucleus (ACN) and the paraventricular nucleus (PVN) are shown. B: An oxytocin immunolabeled sagittal section demonstrated the presence of oxytocin-ir neurons in both the ACN and the PVN. The distance between the two nuclei can also be appreciated. Additional abbreviations: cc – corpus callosum, Cx – cerebral cortex, f – fornix, OB – olfactory bulb, och – optic chiasm, TH – thalamus. Scale bar = 500 μm (TIFF 6080 kb)
429_2016_1246_MOESM2_ESM.tif (8.8 mb)
Supplementary fig. 2. Glutamate and GABA immunoreactivities in boutons establishing symmetric and asymmetric synapses in the preoptic area. A: A representative electron micrograph of a section double labeled for GABA and glutamate with gold particles of 10 and 18 nm, respectively. The boutons establishing synapses on the same dendrite are marked by dashed lines. The bouton on the left (b1) establishes a symmetric synapse pointed to by an empty arrow and contains a very high density of 10 nm gold particles indicative of the presence of GABA. In contrast, the number of 18 nm gold particles is very low in this terminal. In turn, the terminal on the right (b2) establishes an asymmetric synapse on the dendrite and contains a high density of 18 nm gold particles indicative of the presence of glutamate, while the number of 10 nm gold particles is very low. B: The scatterplot shows the GABA gold particle density as a function of glutamate gold particle density in all the terminals examined. Symmetric (green) and asymmetric (orange) synapses form clearly separate clusters. C: The glutamate/GABA gold particle density ratio is shown in a box plot for terminals establishing asymmetric and symmetric synapses. To construct the box plot, the same data set was used as for the scatter plot diagram. The glutamate/GABA ratio is highly significantly different between the two groups of terminals (***: p < 0.001) (TIFF 8979 kb)


  1. Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Roe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V (2012) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22:1690–1697CrossRefPubMedGoogle Scholar
  2. Berryman MA, Rodewald RD (1990) An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38:159–170CrossRefPubMedGoogle Scholar
  3. Bloch GJ, Butler PC, Kohlert JG (1996) Galanin microinjected into the medial preoptic nucleus facilitates female- and male-typical sexual behaviors in the female rat. Physiol Behav 59:1147–1154CrossRefPubMedGoogle Scholar
  4. Bloch GJ, Butler PC, Eckersell CB, Mills RH (1998) Gonadal steroid-dependent GAL-IR cells within the medial preoptic nucleus (MPN) and the stimulatory effects of GAL within the MPN on sexual behaviors. Ann N Y Acad Sci 863:188–205CrossRefPubMedGoogle Scholar
  5. Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61:293–303CrossRefPubMedGoogle Scholar
  6. Bramham CR, Torp R, Zhang N, Storm-Mathisen J, Ottersen OP (1990) Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39:405–417CrossRefPubMedGoogle Scholar
  7. Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196CrossRefPubMedGoogle Scholar
  8. Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007CrossRefPubMedPubMedCentralGoogle Scholar
  9. Briski KP, Brandt JA (2000) Oxytocin and vasopressin neurones in principal and accessory hypothalamic magnocellular structures express Fos-immunoreactivity in response to acute glucose deprivation. J Neuroendocrinol 12:409–414CrossRefPubMedGoogle Scholar
  10. Broman J, Hassel B, Rinvik E, Ottersen OP (2000) Biochemistry and anatomy of transmitter glutamate. Handb Chem Neuroanat 18:1–44CrossRefGoogle Scholar
  11. Brooks PJ, Lund PK, Stumpf WE, Pedersen CA (1990) Oxytocin messenger ribonucleic acid levels in the medial preoptic area are increased during lactation. J Neuroendocrinol 2:621–626CrossRefPubMedGoogle Scholar
  12. Brown RS, Kokay IC, Herbison AE, Grattan DR (2010) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518:92–102CrossRefPubMedGoogle Scholar
  13. Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836CrossRefPubMedGoogle Scholar
  14. Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9:11–25CrossRefPubMedGoogle Scholar
  15. Burbach JP, Voorhuis TA, van Tol HH, Ivell R (1987) In situ hybridization of oxytocin messenger RNA: macroscopic distribution and quantitation in rat hypothalamic cell groups. Biochem Biophys Res Commun 145:10–14CrossRefPubMedGoogle Scholar
  16. Burbach JPH, Young LJ, Russell JA (2006) Oxytocin: synthesis, secretion, and reproductive functions. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Academic Press, OxfordGoogle Scholar
  17. Caldwell JD, Jirikowski GF, Greer ER, Stumpf WE, Pedersen CA (1988) Ovarian steroids and sexual interaction alter oxytocinergic content and distribution in the basal forebrain. Brain Res 446:236–244CrossRefPubMedGoogle Scholar
  18. Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24:937–966CrossRefPubMedGoogle Scholar
  19. Christiansen SH (2011) Regulation of the galanin system in the brainstem and hypothalamus by electroconvulsive stimulation in mice. Neuropeptides 45:337–341CrossRefPubMedGoogle Scholar
  20. Ciosek J, Drobnik J (2013) Galanin modulates oxytocin release from rat hypothalamo-neurohypophysial explant in vitro—the role of acute or prolonged osmotic stimulus. Endokrynol Pol 64:139–148PubMedGoogle Scholar
  21. Cservenak M, Bodnar I, Usdin TB, Palkovits M, Nagy GM, Dobolyi A (2010) Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology 151:5830–5840CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cservenak M, Szabo ER, Bodnar I, Leko A, Palkovits M, Nagy GM, Usdin TB, Dobolyi A (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084CrossRefPubMedGoogle Scholar
  23. Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302:1019–1037CrossRefPubMedGoogle Scholar
  24. Decavel C, van den Pol AN (1992) Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316:104–116CrossRefPubMedGoogle Scholar
  25. Diaz-Cabiale Z, Flores-Burgess A, Parrado C, Narvaez M, Millon C, Puigcerver A, Covenas R, Fuxe K, Narvaez JA (2014) Galanin receptor/neuropeptide y receptor interactions in the central nervous system. Curr Protein Pept Sci 15:666–672CrossRefPubMedGoogle Scholar
  26. Didier A, Carleton A, Bjaalie JG, Vincent JD, Ottersen OP, Storm-Mathisen J, Lledo PM (2001) A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc Natl Acad Sci USA 98:6441–6446CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dobolyi A (2011) Novel potential regulators of maternal adaptations during lactation: tuberoinfundibular peptide 39 and amylin. J Neuroendocrinol 23:1002–1008CrossRefPubMedGoogle Scholar
  28. Dobolyi A, Ueda H, Uchida H, Palkovits M, Usdin TB (2002) Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc Natl Acad Sci USA 99:1651–1656CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dobolyi A, Palkovits M, Usdin TB (2003) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455:547–566CrossRefPubMedGoogle Scholar
  30. Dobolyi A, Irwin S, Wang J, Usdin TB (2006a) The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 31:227–236CrossRefPubMedGoogle Scholar
  31. Dobolyi A, Wang J, Irwin S, Usdin TB (2006b) Postnatal development and gender-dependent expression of TIP39 in the rat brain. J Comp Neurol 498:375–389CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dobolyi A, Palkovits M, Usdin TB (2010) The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol 90:29–59CrossRefPubMedGoogle Scholar
  33. Dobolyi A, Grattan DR, Stolzenberg DS (2014) Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 26:627–640CrossRefPubMedGoogle Scholar
  34. Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770CrossRefPubMedPubMedCentralGoogle Scholar
  35. El-Emam Dief A, Caldwell JD, Jirikowski GF (2013) Colocalization of p450 aromatase and oxytocin immunostaining in the rat hypothalamus. Horm Metab Res 45:273–276PubMedGoogle Scholar
  36. Eriksson M, Ceccatelli S, Uvnas-Moberg K, Iadarola M, Hokfelt T (1996) Expression of Fos-related antigens, oxytocin, dynorphin and galanin in the paraventricular and supraoptic nuclei of lactating rats. Neuroendocrinology 63:356–367CrossRefPubMedGoogle Scholar
  37. Fleming AS, Walsh C (1994) Neuropsychology of maternal behavior in the rat: c-fos expression during mother-litter interactions. Psychoneuroendocrinology 19:429–443CrossRefPubMedGoogle Scholar
  38. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631PubMedGoogle Scholar
  39. Garcia-Falgueras A, Ligtenberg L, Kruijver FP, Swaab DF (2011) Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity. J Comp Neurol 519:3061–3084CrossRefPubMedGoogle Scholar
  40. Gavrilov YV, Ellison BA, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE, Valko PO (2016) Disrupted sleep in narcolepsy: exploring the integrity of galanin neurons in the ventrolateral preoptic Area. Sleep 39:1059–1062CrossRefPubMedPubMedCentralGoogle Scholar
  41. Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20:752–763CrossRefPubMedGoogle Scholar
  42. Greer ER, Caldwell JD, Johnson MF, Prange AJ Jr, Pedersen CA (1986) Variations in concentration of oxytocin and vasopressin in the paraventricular nucleus of the hypothalamus during the estrous cycle in rats. Life Sci 38:2311–2318CrossRefPubMedGoogle Scholar
  43. Hammouche SB, Bennis M (2013) Galanin immunoreactivity in the brain of the desert lizard Uromastyx acanthinura during activity season. Folia Histochem Cytobiol 51:45–54CrossRefPubMedGoogle Scholar
  44. Hokfelt T, Broberger C, Diez M, Xu ZQ, Shi T, Kopp J, Zhang X, Holmberg K, Landry M, Koistinaho J (1999) Galanin and NPY, two peptides with multiple putative roles in the nervous system. Horm Metab Res 31:330–334CrossRefPubMedGoogle Scholar
  45. Hou-Yu A, Lamme AT, Zimmerman EA, Silverman AJ (1986) Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure. Neuroendocrinology 44:235–246CrossRefPubMedGoogle Scholar
  46. Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45:1033–1041CrossRefPubMedGoogle Scholar
  47. Jakobowitz DM, Skofitsch G (1991) Localization of galanin cell bodies in the brain by immunohistochemistry and in situ hybridization histochemistry. In: Hökfelt T, Bartfai T, Jacobowitz DM, Ottoson D (eds) Galanin: a new multifunctional peptide in the neuro-endocrine system. Macmillan Press, London, pp 69–92CrossRefGoogle Scholar
  48. Jenstad M, Quazi AZ, Zilberter M et al (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19:1092–1106CrossRefPubMedGoogle Scholar
  49. Knobloch HS, Grinevich V (2014) Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 8:31CrossRefPubMedPubMedCentralGoogle Scholar
  50. Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S (1998) Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol 36:357–378CrossRefPubMedGoogle Scholar
  51. Landry M, Roche D, Angelova E, Calas A (1997) Expression of galanin in hypothalamic magnocellular neurones of lactating rats: co-existence with vasopressin and oxytocin. J Endocrinol 155:467–481CrossRefPubMedGoogle Scholar
  52. Lang R, Gundlach AL, Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 115:177–207CrossRefPubMedGoogle Scholar
  53. Larsen CM, Grattan DR (2012) Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 26:201–209CrossRefPubMedGoogle Scholar
  54. Laurent FM, Hindelang C, Klein MJ, Stoeckel ME, Felix JM (1989) Expression of the oxytocin and vasopressin genes in the rat hypothalamus during development: an in situ hybridization study. Brain Res Dev Brain Res 46:145–154CrossRefPubMedGoogle Scholar
  55. Li C, Chen P, Smith MS (1999) Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience 94:117–129CrossRefPubMedGoogle Scholar
  56. Mann PE, Bridges RS (2002) Prolactin receptor gene expression in the forebrain of pregnant and lactating rats. Brain Res Mol Brain Res 105:136–145CrossRefPubMedGoogle Scholar
  57. Martin-Perez J, Garcia-Martinez JM, Sanchez-Bailon MP, Mayoral-Varo V, Calcabrini A (2015) Role of SRC family kinases in prolactin signaling. Adv Exp Med Biol 846:163–188CrossRefPubMedGoogle Scholar
  58. Mathieson WB, Taylor SW, Marshall M, Neumann PE (2000) Strain and sex differences in the morphology of the medial preoptic nucleus of mice. J Comp Neurol 428:254–265CrossRefPubMedGoogle Scholar
  59. Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467PubMedGoogle Scholar
  60. Meeker RB, Swanson DJ, Greenwood RS, Hayward JN (1993) Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalamus. Brain Res 600:112–122CrossRefPubMedGoogle Scholar
  61. Meister B, Villar MJ, Ceccatelli S, Hokfelt T (1990) Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: an immunohistochemical study using experimental manipulations. Neuroscience 37:603–633CrossRefPubMedGoogle Scholar
  62. Neville MC (2006) Lactation and Its Hormonal Control. In: Neill JD (ed) Physiology of reproduction. Academic Press, Amsterdam, pp 2993–3054Google Scholar
  63. Nomura M, Tsutsui M, Shimokawa H, Fujimoto N, Ueta Y, Morishita T, Yanagihara N, Matsumoto T (2005) Effects of nitric oxide synthase isoform deletion on oxytocin and vasopressin messenger RNA in mouse hypothalamus. NeuroReport 16:413–417CrossRefPubMedGoogle Scholar
  64. Numan M, Insel TR (2003) The neurobiology of parental behavior. Springer, New YorkGoogle Scholar
  65. Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91:146–164CrossRefPubMedGoogle Scholar
  66. Nylen A, Skagerberg G, Alm P, Larsson B, Holmqvist B, Andersson KE (2001) Nitric oxide synthase in the hypothalamic paraventricular nucleus of the female rat; organization of spinal projections and coexistence with oxytocin or vasopressin. Brain Res 908:10–24CrossRefPubMedGoogle Scholar
  67. Olazabal DE, Kalinichev M, Morrell JI, Rosenblatt JS (2002) MPOA cytotoxic lesions and maternal behavior in the rat: effects of midpubertal lesions on maternal behavior and the role of ovarian hormones in maturation of MPOA control of maternal behavior. Horm Behav 41:126–138CrossRefPubMedGoogle Scholar
  68. Ottersen OP (1989) Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J Chem Neuroanat 2:57–66PubMedGoogle Scholar
  69. Ottersen OP, Storm-Mathisen J, Bramham C, Torp R, Laake J, Gundersen V (1990) A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Prog Brain Res 83:99–114CrossRefPubMedGoogle Scholar
  70. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, SidneyGoogle Scholar
  71. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  72. Pedersen CA, Caldwell JD, Walker C, Ayers G, Mason GA (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108:1163–1171CrossRefPubMedGoogle Scholar
  73. Pedersen CA, Vadlamudi SV, Boccia ML, Amico JA (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5:274–281CrossRefPubMedGoogle Scholar
  74. Phend KD, Weinberg RJ, Rustioni A (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. J Histochem Cytochem 40:1011–1020CrossRefPubMedGoogle Scholar
  75. Porteous R, Petersen SL, Yeo SH, Bhattarai JP, Ciofi P, de Tassigny XD, Colledge WH, Caraty A, Herbison AE (2011) Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. J Comp Neurol 519:3456–3469CrossRefPubMedGoogle Scholar
  76. Powers-Martin K, Phillips JK, Biancardi VC, Stern JE (2008) Heterogeneous distribution of basal cyclic guanosine monophosphate within distinct neuronal populations in the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 295:R1341–R1350CrossRefPubMedGoogle Scholar
  77. Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198:45–64CrossRefPubMedGoogle Scholar
  78. Rossmanith WG, Clifton DK, Steiner RA (1996) Galanin gene expression in hypothalamic GnRH-containing neurons of the rat: a model for autocrine regulation. Horm Metab Res 28:257–266CrossRefPubMedGoogle Scholar
  79. Sapsford TJ, Kokay IC, Ostberg L, Bridges RS, Grattan DR (2012) Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol 520:1062–1077CrossRefPubMedPubMedCentralGoogle Scholar
  80. Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246:312–342CrossRefPubMedGoogle Scholar
  81. Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242CrossRefPubMedGoogle Scholar
  82. Simmons DM, Swanson LW (2008) High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neurosci Lett 438:85–89CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sjoeholm A, Bridges RS, Grattan DR, Anderson GM (2011) Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 152:1979–1988CrossRefPubMedPubMedCentralGoogle Scholar
  84. Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP (1986) Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience 19:1045–1050CrossRefPubMedGoogle Scholar
  85. Stack EC, Numan M (2000) The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother–young interactions. Behav Neurosci 114:609–622CrossRefPubMedGoogle Scholar
  86. Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278CrossRefPubMedGoogle Scholar
  87. Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMedGoogle Scholar
  88. Strathearn L, Fonagy P, Amico J, Montague PR (2009) Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 34:2655–2666CrossRefPubMedPubMedCentralGoogle Scholar
  89. Szabo FK, Snyder N, Usdin TB, Hoffman GE (2010) A direct neuronal connection between the subparafascicular and ventrolateral arcuate nuclei in non-lactating female rats. Could this pathway play a role in the suckling-induced prolactin release? Endocrine 37:62–70CrossRefPubMedGoogle Scholar
  90. Tillet Y, Tourlet S, Picard S, Sizaret PY, Caraty A (2012) Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat 43:14–19CrossRefPubMedGoogle Scholar
  91. Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389CrossRefPubMedGoogle Scholar
  92. Usdin TB, Hoare SR, Wang T, Mezey E, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2:941–943CrossRefPubMedGoogle Scholar
  93. Wang BL, Larsson LI (1985) Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microscopical double and triple staining method employing primary antibodies from the same species. Histochemistry 83:47–56CrossRefPubMedGoogle Scholar
  94. Whitelaw CM, Robinson JE, Hastie PM, Padmanabhan V, Evans NP (2012) Effects of cycle stage on regionalised galanin, galanin receptors 1–3, GNRH and GNRH receptor mRNA expression in the ovine hypothalamus. J Endocrinol 212:353–361CrossRefPubMedGoogle Scholar
  95. Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA)  2016

Authors and Affiliations

  • Melinda Cservenák
    • 1
    • 2
  • Viktor Kis
    • 1
    • 3
  • Dávid Keller
    • 1
    • 2
  • Diána Dimén
    • 1
    • 3
  • Lilla Menyhárt
    • 3
  • Szilvia Oláh
    • 1
  • Éva R. Szabó
    • 1
    • 2
  • János Barna
    • 2
  • Éva Renner
    • 4
    • 5
  • Ted B. Usdin
    • 6
  • Arpád Dobolyi
    • 1
    • 2
  1. 1.MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and NeurobiologyHungarian Academy of Sciences and Eötvös Loránd UniversityBudapestHungary
  2. 2.Laboratory of Neuromorphology, Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
  3. 3.Department of Anatomy, Cell and Developmental Biology, Institute of BiologyEötvös Loránd UniversityBudapestHungary
  4. 4.Human Brain Tissue BankSemmelweis UniversityBudapestHungary
  5. 5.MTA-SE NAP Human Brain Tissue Bank Microdissection LaboratorySemmelweis UniversityBudapestHungary
  6. 6.Section on Fundamental NeuroscienceNational Institute of Mental HealthBethesdaUSA

Personalised recommendations