Advertisement

Brain Structure and Function

, Volume 222, Issue 2, pp 749–764 | Cite as

Human navigation network: the intrinsic functional organization and behavioral relevance

  • Xiang-Zhen KongEmail author
  • Xu Wang
  • Yi Pu
  • Lijie Huang
  • Xin Hao
  • Zonglei Zhen
  • Jia LiuEmail author
Original Article

Abstract

Spatial navigation is a crucial ability for living. Previous work has revealed multiple distributed brain regions associated with human navigation. However, little is known about how these regions work together as a network (referred to as navigation network) to support flexible navigation. In a novel protocol, we combined neuroimaging meta-analysis, and functional connectivity and behavioral data from the same subjects. Briefly, we first constructed the navigation network for each participant, by combining a large-scale neuroimaging meta-analysis (with the Neurosynth) and resting-state functional magnetic resonance imaging. Then, we investigated multiple topological properties of the navigation networks, including small-worldness, modularity, and highly connected hubs. Finally, we explored the behavioral relevance of these intrinsic properties in a large sample of healthy young adults (N = 190). We found that navigation networks showed small-world and modular organization at global level. More importantly, we found that increased small-worldness and modularity of the navigation network were associated with better navigation ability. Finally, we found that the right retrosplenial complex (RSC) acted as one of the hubs in the navigation network, and that higher betweenness of this region correlated with better navigation ability, suggesting a critical role of the RSC in modulating the navigation network in human brain. Our study takes one of the first steps toward understanding the underlying organization of the navigation network. Moreover, these findings suggest the potential applications of the novel approach to investigating functionally meaningful networks in human brain and their relations to the behavioral impairments in the aging and psychiatric patients.

Keywords

Spatial navigation Functional connectivity Individual differences Connectomics 

Notes

Acknowledgments

This study was funded by the National Natural Science Foundation of China (31230031, 31221003, and 31470055), the National Basic Research Program of China (2014CB846103), National Social Science Foundation of China (13&ZD073, 14ZDB160) and Changjiang Scholars Programme of China.

References

  1. Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122(Pt 9):1613–1628PubMedCrossRefGoogle Scholar
  2. Andersson JLR, Jenkinson M, Smith S (2007a) Non-linear optimisation. FMRIB Technical report TR0JA2. FMRIB Centre, Oxford, United Kingdom. http://www.fmrib.ox.ac.uk/analysis/techrep
  3. Andersson JLR, Jenkinson M, Smith S (2007b) Non-linear registration, aka Spatial normalisation. FMRIB Technical report TR0JA2. FMRIB Centre, Oxford, United Kingdom. http://www.fmrib.ox.ac.uk/analysis/techrep
  4. Arnold AE, Burles F, Krivoruchko T, Liu I, Rey CD, Levy RM, Iaria G (2013) Cognitive mapping in humans and its relationship to other orientation skills. Exp Brain Res 224(3):359–372. doi: 10.1007/s00221-012-3316-0 PubMedCrossRefGoogle Scholar
  5. Arnold AE, Protzner AB, Bray S, Levy RM, Iaria G (2014) Neural network configuration and efficiency underlies individual differences in spatial orientation ability. J Cogn Neurosci 26(2):380–394. doi: 10.1162/jocn_a_00491 PubMedCrossRefGoogle Scholar
  6. Auger SD, Mullally SL, Maguire EA (2012) Retrosplenial cortex codes for permanent landmarks. PLoS One 7(8):e43620. doi: 10.1371/journal.pone.0043620 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi: 10.1177/1073858406293182 PubMedCrossRefGoogle Scholar
  8. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739. doi: 10.1073/pnas.0911855107 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Breckel TP, Thiel CM, Bullmore ET, Zalesky A, Patel AX, Giessing C (2013) Long-term effects of attentional performance on functional brain network topology. PLoS One 8(9):e74125. doi: 10.1371/journal.pone.0074125 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown TI, Whiteman AS, Aselcioglu I, Stern CE (2014) Structural differences in hippocampal and prefrontal gray matter volume support flexible context-dependent navigation ability. J Neurosci 34(6):2314–2320. doi: 10.1523/JNEUROSCI.2202-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi: 10.1038/nrn2575 PubMedCrossRefGoogle Scholar
  12. Burgess N, Maguire EA, Spiers HJ, O’Keefe J (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14(2):439–453. doi: 10.1006/nimg.2001.0806 PubMedCrossRefGoogle Scholar
  13. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114(2):340–375. doi: 10.1037/0033-295X.114.2.340 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cain DP, Humpartzoomian R, Boon F (2006) Retrosplenial cortex lesions impair water maze strategies learning or spatial place learning depending on prior experience of the rat. Behav Brain Res 170(2):316–325. doi: 10.1016/j.bbr.2006.03.003 PubMedCrossRefGoogle Scholar
  15. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18(10):2374–2381. doi: 10.1093/cercor/bhn003 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ciaramelli E (2008) The role of ventromedial prefrontal cortex in navigation: a case of impaired wayfinding and rehabilitation. Neuropsychologia 46(7):2099–2105. doi: 10.1016/j.neuropsychologia.2007.11.029 PubMedCrossRefGoogle Scholar
  17. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. doi: 10.1016/j.neuron.2014.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cooper BG, Mizumori SJ (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J Neurosci 21(11):3986–4001 (pii: 21/11/3986) PubMedGoogle Scholar
  19. Cornwell BR, Johnson LL, Holroyd T, Carver FW, Grillon C (2008) Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J Neurosci 28(23):5983–5990. doi: 10.1523/JNEUROSCI.5001-07.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Danon L, Diaz-Guilera A, Arenas A (2006) Effect of size heterogeneity on community identification in complex networks. J Stat Mech Theory Exp 2006:P11010CrossRefGoogle Scholar
  21. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188. doi: 10.1038/nature01964 PubMedCrossRefGoogle Scholar
  22. Ekstrom AD, Arnold AE, Iaria G (2014) A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front Hum Neurosci 8:803. doi: 10.3389/fnhum.2014.00803 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12(10):388–396. doi: 10.1016/j.tics.2008.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. doi: 10.1038/33402 PubMedCrossRefGoogle Scholar
  25. Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23(1):115–125 (pii: S0896-6273(00)80758-8) PubMedCrossRefGoogle Scholar
  26. Epstein R, Deyoe EA, Press DZ, Rosen AC, Kanwisher N (2001) Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn Neuropsychol 18(6):481–508. doi: 10.1080/02643290125929 PubMedCrossRefGoogle Scholar
  27. Epstein RA, Higgins JS, Thompson-Schill SL (2005) Learning places from views: variation in scene processing as a function of experience and navigational ability. J Cogn Neurosci 17(1):73–83. doi: 10.1162/0898929052879987 PubMedCrossRefGoogle Scholar
  28. Fonteneau E, Bozic M, Marslen-Wilson WD (2015) Brain network connectivity during language comprehension: interacting linguistic and perceptual subsystems. Cereb Cortex 25(10):3962–3976. doi: 10.1093/cercor/bhu283 PubMedCrossRefGoogle Scholar
  29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi: 10.1073/pnas.0504136102 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051. doi: 10.1073/pnas.0604187103 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283. doi: 10.1152/jn.90777.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Freeman LC (1977) A set of measures of centrality based on betweenness. Am Sociol Assoc 40(1):35–41Google Scholar
  33. Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. NeuroReport 8(3):739–744PubMedCrossRefGoogle Scholar
  34. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484(7392):62–68. doi: 10.1038/nature10918 PubMedPubMedCentralCrossRefGoogle Scholar
  35. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226. doi: 10.1371/journal.pone.0005226 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hegarty M, Richardson AE, Montello DR, Lovelace K, Subbiah I (2002) Development of a self-report measure of environmental spatial ability. Intelligence 30(5):425–447CrossRefGoogle Scholar
  37. Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, Poldrack RA (2014) Predicting risky choices from brain activity patterns. Proc Natl Acad Sci USA 111(7):2470–2475. doi: 10.1073/pnas.1321728111 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3(4):e0002051. doi: 10.1371/journal.pone.0002051 PubMedCrossRefGoogle Scholar
  39. Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N (2010) Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci USA 107(32):14466–14471. doi: 10.1073/pnas.1004243107 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ikkai A, Curtis CE (2011) Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia 49(6):1428–1434. doi: 10.1016/j.neuropsychologia.2010.12.020 PubMedCrossRefGoogle Scholar
  41. Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22(4):1722–1731. doi: 10.1016/j.neuroimage.2004.05.017 PubMedCrossRefGoogle Scholar
  42. Janzen G, Jansen C, van Turennout M (2008) Memory consolidation of landmarks in good navigators. Hippocampus 18(1):40–47. doi: 10.1002/hipo.20364 PubMedCrossRefGoogle Scholar
  43. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156 (pii: S1361841501000366) PubMedCrossRefGoogle Scholar
  44. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841 (pii: S1053811902911328) PubMedCrossRefGoogle Scholar
  45. Kim JG, Aminoff EM, Kastner S, Behrmann M (2015) A neural basis for developmental topographic disorientation. J Neurosci 35(37):12954–12969PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kong XZ, Zhen Z, Li X, Lu HH, Wang R, Liu L, He Y, Zang Y, Liu J (2014) Individual differences in impulsivity predict head motion during magnetic resonance imaging. PLoS One 9(8):e104989. doi: 10.1371/journal.pone.0104989 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kong XZ, Huang Y, Zhen Z, Huang L, Wang X, Yang Z, Liu J (2016a) Sex-linked association between cortical scene selectivity and spatial navigation ability (submitted)Google Scholar
  48. Kong XZ, Song Y, Zhen Z, Liu J (2016b) Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cereb Cortex. doi: 10.1093/cercor/bhv322 Google Scholar
  49. Kozlowski LT, Bryant KJ (1977) Sense-of-direction, spatial orientation, and cognitive maps. J Exp Psychol Hum Percept Perform 3(4):590–598CrossRefGoogle Scholar
  50. Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45. doi: 10.3389/fnsys.2014.00045 PubMedPubMedCentralGoogle Scholar
  51. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395. doi: 10.1371/journal.pcbi.1000395 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238PubMedCrossRefGoogle Scholar
  53. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924PubMedCrossRefGoogle Scholar
  54. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403. doi: 10.1073/pnas.070039597 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Marchette SA, Vass LK, Ryan J, Epstein RA (2014) Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat Neurosci 17(11):1598–1606. doi: 10.1038/nn.3834 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913. doi: 10.1126/science.1065103 PubMedCrossRefGoogle Scholar
  57. Mellet E, Tzourio N, Denis M, Mazoyer B (1995) A positron emission tomography study of visual and mental spatial exploration. J Cogn Neurosci 7(4):433–445. doi: 10.1162/jocn.1995.7.4.433 PubMedCrossRefGoogle Scholar
  58. Mendez MF, Cherrier MM (2003) Agnosia for scenes in topographagnosia. Neuropsychologia 41(10):1387–1395 (pii: S0028393203000411) PubMedCrossRefGoogle Scholar
  59. Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 212(1):38–52. doi: 10.1002/cne.902120104 PubMedCrossRefGoogle Scholar
  60. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37. doi: 10.3389/neuro.11.037.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Moffat SD, Kennedy KM, Rodrigue KM, Raz N (2007) Extrahippocampal contributions to age differences in human spatial navigation. Cereb Cortex 17(6):1274–1282. doi: 10.1093/cercor/bhl036 PubMedCrossRefGoogle Scholar
  62. Mullally SL, Maguire EA (2011) A new role for the parahippocampal cortex in representing space. J Neurosci 31(20):7441–7449. doi: 10.1523/JNEUROSCI.0267-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905. doi: 10.1016/j.neuroimage.2008.09.036 PubMedCrossRefGoogle Scholar
  64. Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(6 Pt 2):066133CrossRefGoogle Scholar
  65. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582. doi: 10.1073/pnas.0601602103 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2 Pt 2):026113CrossRefGoogle Scholar
  67. O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12(6):1013–1023PubMedCrossRefGoogle Scholar
  68. Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation ability dependent neural activation in the human brain: an fMRI study. Neurosci Res 55(4):361–369. doi: 10.1016/j.neures.2006.04.009 PubMedCrossRefGoogle Scholar
  69. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175. doi: 10.1016/0006-8993(71)90358-1 PubMedCrossRefGoogle Scholar
  70. Onoda K, Yamaguchi S (2013) Small-worldness and modularity of the resting-state functional brain network decrease with aging. Neurosci Lett 556:104–108. doi: 10.1016/j.neulet.2013.10.023 PubMedCrossRefGoogle Scholar
  71. Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47(4):1747–1756. doi: 10.1016/j.neuroimage.2009.04.058 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Poldrack RA (2011) Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72(5):692–697. doi: 10.1016/j.neuron.2011.11.001 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154. doi: 10.1016/j.neuroimage.2011.10.018 PubMedCrossRefGoogle Scholar
  74. Raven J (ed) (1995) Advanced progressive matrices sets I and II. Oxford Psychologist Press Ltd, OxfordGoogle Scholar
  75. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 PubMedCrossRefGoogle Scholar
  76. Sala-Llonch R, Junque C, Arenaza-Urquijo EM, Vidal-Pineiro D, Valls-Pedret C, Palacios EM, Domenech S, Salva A, Bargallo N, Bartres-Faz D (2014) Changes in whole-brain functional networks and memory performance in aging. Neurobiol Aging 35(10):2193–2202. doi: 10.1016/j.neurobiolaging.2014.04.007 PubMedCrossRefGoogle Scholar
  77. Schedlbauer AM, Copara MS, Watrous AJ, Ekstrom AD (2014) Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Sci Rep 4:6431. doi: 10.1038/srep06431 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171(3972):701–703PubMedCrossRefGoogle Scholar
  79. Sholl MJ (1988) The relationship between sense of direction and mental geographic updating. Intelligence 12(3):299–314CrossRefGoogle Scholar
  80. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482Google Scholar
  81. Sobel DF, Gallen CC, Schwartz BJ, Waltz TA, Copeland B, Yamada S, Hirschkoff EC, Bloom FE (1993) Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR Am J Neuroradiol 14(4):915–925PubMedGoogle Scholar
  82. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840. doi: 10.1016/j.neuroimage.2006.01.037 PubMedCrossRefGoogle Scholar
  83. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. doi: 10.1371/journal.pcbi.0010042 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3. doi: 10.1186/1753-4631-1-3 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stevens AA, Tappon SC, Garg A, Fair DA (2012) Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS One 7(1):e30468. doi: 10.1371/journal.pone.0030468 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K (1997) Pure topographic disorientation due to right retrosplenial lesion. Neurology 49(2):464–469PubMedCrossRefGoogle Scholar
  87. Tyler LK, Marslen-Wilson W (2008) Fronto-temporal brain systems supporting spoken language comprehension. Philos Trans R Soc Lond B Biol Sci 363(1493):1037–1054. doi: 10.1098/rstb.2007.2158 PubMedCrossRefGoogle Scholar
  88. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi: 10.1006/nimg.2001.0978 PubMedCrossRefGoogle Scholar
  89. Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT (1987) Retrosplenial amnesia. Brain 110(Pt 6):1631–1646PubMedCrossRefGoogle Scholar
  90. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011 PubMedCrossRefGoogle Scholar
  91. van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696. doi: 10.1016/j.tics.2013.09.012 PubMedCrossRefGoogle Scholar
  92. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624. doi: 10.1523/JNEUROSCI.1443-09.2009 PubMedCrossRefGoogle Scholar
  93. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1):431–438. doi: 10.1016/j.neuroimage.2011.07.044 PubMedCrossRefGoogle Scholar
  94. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. doi: 10.1038/nrn2733 PubMedCrossRefGoogle Scholar
  95. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. doi: 10.3389/fnhum.2015.00386 PubMedPubMedCentralGoogle Scholar
  96. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. doi: 10.1038/30918 PubMedCrossRefGoogle Scholar
  97. Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD (2013) Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci 16(3):349–356. doi: 10.1038/nn.3315 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wegman J, Janzen G (2011) Neural encoding of objects relevant for navigation and resting state correlations with navigational ability. J Cogn Neurosci 23(12):3841–3854. doi: 10.1162/jocn_a_00081 PubMedCrossRefGoogle Scholar
  99. Wegman J, Fonteijn HM, van Ekert J, Tyborowska A, Jansen C, Janzen G (2014) Gray and white matter correlates of navigational ability in humans. Hum Brain Mapp 35(6):2561–2572. doi: 10.1002/hbm.22349 PubMedCrossRefGoogle Scholar
  100. Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14(3):138–146. doi: 10.1016/j.tics.2010.01.001 PubMedCrossRefGoogle Scholar
  101. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8(7):e68910. doi: 10.1371/journal.pone.0068910 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670. doi: 10.1038/nmeth.1635 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zeng LL, Wang D, Fox MD, Sabuncu M, Hu D, Ge M, Buckner RL, Liu H (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1317424111 Google Scholar
  104. Zhen Z, Yang Z, Huang L, Kong XZ, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25. doi: 10.1016/j.neuroimage.2015.03.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
  2. 2.School of Psychology, Beijing Normal UniversityBeijingChina
  3. 3.ARC Centre of Excellence in Cognition and Its Disorders, Macquarie UniversitySydneyAustralia
  4. 4.Department of Cognitive ScienceMacquarie UniversitySydneyAustralia

Personalised recommendations