Advertisement

Brain Structure and Function

, Volume 222, Issue 1, pp 619–634 | Cite as

Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions

  • Xin Di
  • Jia Huang
  • Bharat B. Biswal
Original Article

Abstract

Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.

Keywords

Amygdala Connectivity Dynamic connectivity fMRI Psychophysiological interaction Task modulation 

Notes

Acknowledgments

We thank Dr. Suril Gohel for his insightful comments on an earlier version of this manuscript. This research was supported by Grants from NIH R01AG032088, R01DA038895, and NSFC (National Natural Science Foundation of China) 31100747.

Supplementary material

429_2016_1239_MOESM1_ESM.docx (673 kb)
Supplementary material 1 (DOCX 672 kb)

References

  1. Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672. doi: 10.1038/372669a0 CrossRefPubMedGoogle Scholar
  2. Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393:470–474. doi: 10.1038/30982 CrossRefPubMedGoogle Scholar
  3. Adolphs R, Tranel D, Buchanan TW (2005) Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat Neurosci 8:512–518. doi: 10.1038/nn1413 CrossRefPubMedGoogle Scholar
  4. Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368. doi: 10.1016/0006-8993(80)90279-6 CrossRefPubMedGoogle Scholar
  5. Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–309. doi: 10.1038/35077083 CrossRefPubMedGoogle Scholar
  6. Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103. doi: 10.1016/j.brainresrev.2004.02.004 CrossRefPubMedGoogle Scholar
  7. Bechara A (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307. doi: 10.1093/cercor/10.3.295 CrossRefPubMedGoogle Scholar
  8. Bechara A, Damasio H, Damasio AR (2003) Role of the amygdala in decision-making. Ann N Y Acad Sci 985:356–369. doi: 10.1111/j.1749-6632.2003.tb07094.x CrossRefPubMedGoogle Scholar
  9. Blasi G, Lo Bianco L, Taurisano P, Gelao B, Romano R, Fazio L, Papazacharias A, Di Giorgio A, Caforio G, Rampino A, Masellis R, Papp A, Ursini G, Sinibaldi L, Popolizio T, Sadee W, Bertolino A (2009) Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. J Neurosci 29:14812–14819. doi: 10.1523/JNEUROSCI.3609-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruneau EG, Jacoby N, Saxe R (2015) Empathic control through coordinated interaction of amygdala, theory of mind and extended pain matrix brain regions. Neuroimage 114:105–119. doi: 10.1016/j.neuroimage.2015.04.034 CrossRefPubMedGoogle Scholar
  11. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349. doi: 10.1038/nrn3214 PubMedGoogle Scholar
  12. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132. doi: 10.1016/j.cortex.2008.05.004 CrossRefPubMedGoogle Scholar
  13. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94. doi: 10.1006/nimg.2002.1136 CrossRefPubMedGoogle Scholar
  14. Chan RCK, Di X, McAlonan GM, Gong Q (2011) Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull 37:177–188. doi: 10.1093/schbul/sbp073 CrossRefPubMedGoogle Scholar
  15. Cisler JM, Bush K, Steele JS (2013) A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. NeuroimageGoogle Scholar
  16. Costafreda SG, Brammer MJ, David AS, Fu CHY (2008) Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev 58:57–70. doi: 10.1016/j.brainresrev.2007.10.012 CrossRefGoogle Scholar
  17. Cremers HR, Demenescu LR, Aleman A, Renken R, van Tol M-J, van der Wee NJA, Veltman DJ, Roelofs K (2010) Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. Neuroimage 49:963–970. doi: 10.1016/j.neuroimage.2009.08.023 CrossRefPubMedGoogle Scholar
  18. Di X, Chan RCK, Gong Q (2009) White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 33:1390–1394. doi: 10.1016/j.pnpbp.2009.08.020 CrossRefPubMedGoogle Scholar
  19. Di X, Rypma B, Biswal BB (2014) Correspondence of executive function related functional and anatomical alterations in aging brain. Prog Neuropsychopharmacol Biol Psychiatry 48:41–50. doi: 10.1016/j.pnpbp.2013.09.001 CrossRefPubMedGoogle Scholar
  20. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926. doi: 10.1002/hbm.20718 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59:2349–2361. doi: 10.1016/j.neuroimage.2011.09.017 CrossRefPubMedGoogle Scholar
  22. Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108:3–10. doi: 10.1016/j.schres.2008.11.021 CrossRefPubMedGoogle Scholar
  23. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023. doi: 10.1176/appi.ajp.2008.07101562 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25:185–198. doi: 10.1002/hbm.20141 CrossRefPubMedGoogle Scholar
  25. Frank DW, Dewitt M, Hudgens-Haney M, Schaeffer DJ, Ball BH, Schwartz N, Hussein AA, Smart LM, Sabatinelli D (2014) Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci Biobehav Rev 45:202–211. doi: 10.1016/j.neubiorev.2014.06.010 CrossRefPubMedGoogle Scholar
  26. Friedel E, Schlagenhauf F, Sterzer P, Park SQ, Bermpohl F, Ströhle A, Stoy M, Puls I, Hägele C, Wrase J, Büchel C, Heinz A (2009) 5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology 205:261–271. doi: 10.1007/s00213-009-1536-1 CrossRefPubMedGoogle Scholar
  27. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6:218–229CrossRefPubMedGoogle Scholar
  28. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302. doi: 10.1016/S1053-8119(03)00202-7 CrossRefPubMedGoogle Scholar
  29. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34:418–432PubMedPubMedCentralGoogle Scholar
  30. Gitelman DR, Penny WD, Ashburner J, Friston KJ (2003) Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19:200–207CrossRefPubMedGoogle Scholar
  31. Gorka AX, Knodt AR, Hariri AR (2015) Basal forebrain moderates the magnitude of task-dependent amygdala functional connectivity. Soc Cogn Affect Neurosci 10:501–507. doi: 10.1093/scan/nsu080 CrossRefPubMedGoogle Scholar
  32. Hahn A, Stein P, Windischberger C, Weissenbacher A, Spindelegger C, Moser E, Kasper S, Lanzenberger R (2011) Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage 56:881–889. doi: 10.1016/j.neuroimage.2011.02.064 CrossRefPubMedGoogle Scholar
  33. Herrington JD, Taylor JM, Grupe DW, Curby KM, Schultz RT (2011) Bidirectional communication between amygdala and fusiform gyrus during facial recognition. Neuroimage 56:2348–2355. doi: 10.1016/j.neuroimage.2011.03.072 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry. doi: 10.1001/jamapsychiatry.2015.0071 PubMedPubMedCentralGoogle Scholar
  35. Kim J, Horwitz B (2008) Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions. Magn Reson Imaging 26:583–593. doi: 10.1016/j.mri.2007.10.011 CrossRefPubMedGoogle Scholar
  36. Koelsch S, Skouras S, Fritz T, Herrera P, Bonhage C, Küssner MB, Jacobs AM (2013) The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. Neuroimage 81:49–60. doi: 10.1016/j.neuroimage.2013.05.008 CrossRefPubMedGoogle Scholar
  37. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. Neuroimage 87:345–355. doi: 10.1016/j.neuroimage.2013.11.001 CrossRefPubMedGoogle Scholar
  38. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005a) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164. doi: 10.1002/hbm.20136 CrossRefPubMedGoogle Scholar
  39. Laird AR, Lancaster JL, Fox PT (2005b) BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3:65–78CrossRefPubMedGoogle Scholar
  40. Laird AR, Robinson JL, McMillan KM, Tordesillas-Gutiérrez D, Moran ST, Gonzales SM, Ray KL, Franklin C, Glahn DC, Fox PT, Lancaster JL (2010) Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage 51:677–683. doi: 10.1016/j.neuroimage.2010.02.048 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Laird AR, Riedel MC, Sutherland MT, Eickhoff SB, Ray KL, Uecker AM, Fox PM, Turner JA, Fox PT (2015) Neural architecture underlying classification of face perception paradigms. Neuroimage 119:70–80. doi: 10.1016/j.neuroimage.2015.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205. doi: 10.1002/hbm.20345 CrossRefPubMedGoogle Scholar
  43. Lanteaume L, Khalfa S, Regis J, Marquis P, Chauvel P, Bartolomei F (2007) Emotion induction after direct intracerebral stimulations of human amygdala. Cereb Cortex 17:1307–1313. doi: 10.1093/cercor/bhl041 CrossRefPubMedGoogle Scholar
  44. Lee H, Heller AS, van Reekum CM, Nelson B, Davidson RJ (2012) Amygdala-prefrontal coupling underlies individual differences in emotion regulation. Neuroimage 62:1575–1581. doi: 10.1016/j.neuroimage.2012.05.044 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lemogne C, Gorwood P, Boni C, Pessiglione M, Lehéricy S, Fossati P (2011) Cognitive appraisal and life stress moderate the effects of the 5-HTTLPR polymorphism on amygdala reactivity. Hum Brain Mapp 32:1856–1867. doi: 10.1002/hbm.21150 CrossRefPubMedGoogle Scholar
  46. Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176. doi: 10.1016/0166-4328(85)90062-2 CrossRefPubMedGoogle Scholar
  47. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echo planar imaging using resting-state fluctuations. Neuroimage 7:119–132. doi: 10.1006/nimg.1997.0315 CrossRefPubMedGoogle Scholar
  48. Ma N, Liu Y, Li N, Wang C-X, Zhang H, Jiang X-F, Xu H-S, Fu X-M, Hu X, Zhang D-R (2010) Addiction related alteration in resting-state brain connectivity. Neuroimage 49:738–744. doi: 10.1016/j.neuroimage.2009.08.037 CrossRefPubMedGoogle Scholar
  49. Madsen MK, Mc Mahon B, Andersen SB, Siebner HR, Knudsen GM, Fisher PM (2016) Threat-related amygdala functional connectivity is associated with 5-HTTLPR genotype and neuroticism. Soc Cogn Affect Neurosci 11:140–149. doi: 10.1093/scan/nsv098 CrossRefPubMedGoogle Scholar
  50. McLaren DG, Ries ML, Xu G, Johnson SC (2012) A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61:1277–1286. doi: 10.1016/j.neuroimage.2012.03.068 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mende-Siedlecki P, Verosky SC, Turk-Browne NB, Todorov A (2013) Robust selectivity for faces in the human amygdala in the absence of expressions. J Cogn Neurosci 25:2086–2106. doi: 10.1162/jocn_a_00469 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Morris JS, Ohman A, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470. doi: 10.1038/30976 CrossRefPubMedGoogle Scholar
  53. Mothersill O, Morris DW, Kelly S, Rose EJ, Fahey C, O’Brien C, Lyne R, Reilly R, Gill M, Corvin AP, Donohoe G (2014) Effects of MIR137 on fronto-amygdala functional connectivity. Neuroimage 90:189–195. doi: 10.1016/j.neuroimage.2013.12.019 CrossRefPubMedGoogle Scholar
  54. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905. doi: 10.1016/j.neuroimage.2008.09.036 CrossRefPubMedGoogle Scholar
  55. Packard MG, Teather LA (1998) Amygdala modulation of multiple memory systems: hippocampus and caudate-putamen. Neurobiol Learn Mem 69:163–203. doi: 10.1006/nlme.1997.3815 CrossRefPubMedGoogle Scholar
  56. Passamonti L, Rowe JB, Ewbank M, Hampshire A, Keane J, Calder AJ (2008) Connectivity from the ventral anterior cingulate to the amygdala is modulated by appetitive motivation in response to facial signals of aggression. Neuroimage 43:562–570. doi: 10.1016/j.neuroimage.2008.07.045 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Passamonti L, Rowe JB, Schwarzbauer C, Ewbank MP, von dem Hagen E, Calder AJ (2009) Personality predicts the brain’s response to viewing appetizing foods: the neural basis of a risk factor for overeating. J Neurosci 29:43–51. doi: 10.1523/JNEUROSCI.4966-08.2009 CrossRefPubMedGoogle Scholar
  58. Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:400–435. doi: 10.1016/j.plrev.2014.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348. doi: 10.1006/nimg.2002.1087 CrossRefPubMedGoogle Scholar
  60. Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53. doi: 10.1146/annurev.psych.56.091103.070234 CrossRefPubMedGoogle Scholar
  61. Phillips ML, Young AW, Senior C, Brammer M, Andrew C, Calder AJ, Bullmore ET, Perrett DI, Rowland D, Williams SC, Gray JA, David AS (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498. doi: 10.1038/39051 CrossRefPubMedGoogle Scholar
  62. Puglia MH, Lillard TS, Morris JP, Connelly JJ (2015) Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci USA. 1422096112. doi: 10.1073/pnas.1422096112
  63. Rasch B, Spalek K, Buholzer S, Luechinger R, Boesiger P, Papassotiropoulos A, de Quervain DJ-F (2009) A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proc Natl Acad Sci USA 106:19191–19196. doi: 10.1073/pnas.0907425106 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rasch B, Spalek K, Buholzer S, Luechinger R, Boesiger P, de Quervain DJ-F, Papassotiropoulos A (2010) Aversive stimuli lead to differential amygdala activation and connectivity patterns depending on catechol-O-methyltransferase Val158Met genotype. Neuroimage 52:1712–1719. doi: 10.1016/j.neuroimage.2010.05.054 CrossRefPubMedGoogle Scholar
  65. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31:173–184. doi: 10.1002/hbm.20854 PubMedPubMedCentralGoogle Scholar
  66. Roiser JP, de Martino B, Tan GCY, Kumaran D, Seymour B, Wood NW, Dolan RJ (2009) A genetically mediated bias in decision making driven by failure of amygdala control. J Neurosci 29:5985–5991. doi: 10.1523/JNEUROSCI.0407-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626. doi: 10.1016/j.neuroimage.2008.11.030 CrossRefPubMedGoogle Scholar
  68. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32. doi: 10.1089/brain.2012.0080 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sarter M, Markowitsch HJ (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 99:342–380. doi: 10.1037/0735-7044.99.2.342 CrossRefPubMedGoogle Scholar
  70. Schienle A, Stark R, Walter B, Blecker C, Ott U, Kirsch P, Sammer G, Vaitl D (2002) The insula is not specifically involved in disgust processing: an fMRI study. NeuroReport 13:2023–2026. doi: 10.1097/00001756-200211150-00006 CrossRefPubMedGoogle Scholar
  71. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sladky R, Hoflich A, Kublbock M, Kraus C, Baldinger P, Moser E, Lanzenberger R, Windischberger C (2015) Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for fMRI. Cereb Cortex 25:895–903. doi: 10.1093/cercor/bht279 CrossRefPubMedGoogle Scholar
  73. Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, Liberzon I (2012) Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci 37:241–249. doi: 10.1503/jpn.110069 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stamatakis EA, Marslen-Wilson WD, Tyler LK, Fletcher PC (2005) Cingulate control of fronto-temporal integration reflects linguistic demands: a three-way interaction in functional connectivity. Neuroimage 28:115–121. doi: 10.1016/j.neuroimage.2005.06.012 CrossRefPubMedGoogle Scholar
  75. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  76. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780. doi: 10.1006/nimg.2002.1131 CrossRefPubMedGoogle Scholar
  77. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33:1–13. doi: 10.1002/hbm.21186 CrossRefPubMedGoogle Scholar
  78. Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinformatics 10:57–66. doi: 10.1007/s12021-011-9126-x CrossRefPubMedPubMedCentralGoogle Scholar
  79. Vytal K, Hamann S (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cogn Neurosci 22:2864–2885. doi: 10.1162/jocn.2009.21366 CrossRefPubMedGoogle Scholar
  80. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411–418. 9412517Google Scholar
  81. Williams LM, Das P, Liddell BJ, Kemp AH, Rennie CJ, Gordon E (2006) Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J Neurosci 26:9264–9271. doi: 10.1523/JNEUROSCI.1016-06.2006 CrossRefPubMedGoogle Scholar
  82. Wu M, Kujawa A, Lu LH, Fitzgerald DA, Klumpp H, Fitzgerald KD, Monk CS, Phan KL (2016) Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood. Hum Brain Mapp. doi: 10.1002/hbm.23129
  83. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8:665–670. doi: 10.1038/nmeth.1635 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yoder KJ, Porges EC, Decety J (2015) Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample. Hum Brain Mapp 36:1417–1428. doi: 10.1002/hbm.22712 CrossRefPubMedGoogle Scholar
  85. Young MP, Scannell JW, Burns GAPC, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250. doi: 10.1515/REVNEURO.1994.5.3.227 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Institute of PsychologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations