Brain Structure and Function

, Volume 222, Issue 1, pp 417–436 | Cite as

Neuroanatomy of the killer whale (Orcinus orca): a magnetic resonance imaging investigation of structure with insights on function and evolution

  • Alexandra Wright
  • Miriam Scadeng
  • Dominik Stec
  • Rebecca Dubowitz
  • Sam Ridgway
  • Judy St. Leger
Original Article


The evolutionary process of adaptation to an obligatory aquatic existence dramatically modified cetacean brain structure and function. The brain of the killer whale (Orcinus orca) may be the largest of all taxa supporting a panoply of cognitive, sensory, and sensorimotor abilities. Despite this, examination of the O. orca brain has been limited in scope resulting in significant deficits in knowledge concerning its structure and function. The present study aims to describe the neural organization and potential function of the O. orca brain while linking these traits to potential evolutionary drivers. Magnetic resonance imaging was used for volumetric analysis and three-dimensional reconstruction of an in situ postmortem O. orca brain. Measurements were determined for cortical gray and cerebral white matter, subcortical nuclei, cerebellar gray and white matter, corpus callosum, hippocampi, superior and inferior colliculi, and neuroendocrine structures. With cerebral volume comprising 81.51 % of the total brain volume, this O. orca brain is one of the most corticalized mammalian brains studied to date. O. orca and other delphinoid cetaceans exhibit isometric scaling of cerebral white matter with increasing brain size, a trait that violates an otherwise evolutionarily conserved cerebral scaling law. Using comparative neurobiology, it is argued that the divergent cerebral morphology of delphinoid cetaceans compared to other mammalian taxa may have evolved in response to the sensorimotor demands of the aquatic environment. Furthermore, selective pressures associated with the evolution of echolocation and unihemispheric sleep are implicated in substructure morphology and function. This neuroanatomical dataset, heretofore absent from the literature, provides important quantitative data to test hypotheses regarding brain structure, function, and evolution within Cetacea and across Mammalia.


Cetacea Delphinoidea Killer whale (Orcinus orcaMagnetic resonance imaging (MRI) Neuroanatomy Cerebral scaling 



The authors sincerely thank Erika Nilson for preparation of the specimen, Sharon Birzer for illustration, and Paul Ponganis for valuable manuscript feedback. The authors also thank Hauke Bartsch for improved visualization of MR images (Fig. 2 and Online Resource 1) through MR image preprocessing to remove intensity non-uniformity using the Non-parametric Non-uniform intensity Normalization (N3) algorithm as implemented in ITK ( AW was supported by the National Science Foundation Graduate Research Fellowship Program. The funder had no role in the study design, data collection, analysis, or interpretation, preparation of the manuscript, or decision to publish.

Compliance with ethical standards

Conflict of interest

AW, MS, DS, RD, and SR declare that they have no conflict of interest. JSL is a paid employee of SeaWorld Parks and Entertainment. No live animals were used for this study. The O. orca specimen was examined opportunistically during postmortem investigation.

Supplementary material

429_2016_1225_MOESM1_ESM.pdf (2.3 mb)
Online Resource 1. Annotated frontal, horizontal, and sagittal MR images of the O. orca brain. Anatomical directions: A (anterior), P (posterior), D (dorsal), V (ventral), R (right), and L (left) (PDF 2358 kb)


  1. Alonso-Farré J, Gonzalo-Orden M, Barreiro-Vázquez J, Barreiro-Lois A, André M, Morell M, Llarena-Reino M, Monreal-Pawlowsky T, Degollada E (2014) Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and Striped Dolphin (Stenella coeruleoalba). Anat Histol Embryol 44(1):13–21PubMedCrossRefGoogle Scholar
  2. Anthony R (1938) Essai de recherche d’une expression anatomique approximative du degré d’organisation cérébrale, autre que le poids de l’encéphale comparé au poids du corps. B Mem Soc Anthro Par 9(1):17–67CrossRefGoogle Scholar
  3. Au W (1993) Characteristics of dolphin sonar signals. The sonar of dolphins. Springer, New York, pp 115–139CrossRefGoogle Scholar
  4. Au W, Nachtigall P (1997) Acoustics of echolocating dolphins and small whales. Mar Freshw Behav Phys 29(1–4):127–162CrossRefGoogle Scholar
  5. Barton R (1998) Visual specialization and brain evolution in primates. Philos Roy Soc B 265(1409):1933–1937CrossRefGoogle Scholar
  6. Barton R (2006) Primate brain evolution: integrating comparative, neurophysiological, and ethological data. Evol Anthropol 15(6):224–236CrossRefGoogle Scholar
  7. Barton R, Capellini I (2011) Maternal investment, life histories, and the costs of brain growth in mammals. P Natl Acad Sci 108(15):6169–6174CrossRefGoogle Scholar
  8. Barton R, Harvey P (2000) Mosaic evolution of brain structure in mammals. Nature 405(6790):1055–1058PubMedCrossRefGoogle Scholar
  9. Bassett D, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523PubMedCrossRefGoogle Scholar
  10. Begeman L, St. Leger J, Blyde D, Jauniaux T, Lair S, Lovewell G, Raverty S, Seibel H, Siebert U, Staggs S (2012) Intestinal volvulus in cetaceans. Vet Pathol 50(4):590–596Google Scholar
  11. Berns G, Cook P, Foxley S, Jbabdi S, Miller K, Marino L (2015) Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe. Proc R Soc B 282:20151203PubMedPubMedCentralCrossRefGoogle Scholar
  12. Block B, Jonsen I, Jorgensen S, Winship A, Shaffer S, Bograd S, Hazen E, Foley D, Breed G, Harrison A (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475(7354):86–90PubMedCrossRefGoogle Scholar
  13. Bohonak A, van der Linde K (2004) RMA: software for reduced major axis regression. Accessed 10 Feb 2015
  14. Böye M, Güntürkün O, Vauclair J (2005) Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): hemispheric specialization for communication? Eur J Neurosci 21(6):1727–1732PubMedCrossRefGoogle Scholar
  15. Branstetter B, Finneran J, Fletcher E, Weisman B, Ridgway S (2012) Dolphins can maintain vigilant behavior through echolocation for 15 days without interruption or cognitive impairment. PLoS One 7(10):e47478PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bullock T, Gurevich V (1979) Soviet literature on the nervous system and psychobiology of Cetacea. Int Rev Neurobiol 21:47–127PubMedCrossRefGoogle Scholar
  17. Burgess N, Maguire E, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641PubMedCrossRefGoogle Scholar
  18. Butti C, Janeway C, Townshend C, Wicinski B, Reidenberg J, Ridgway S, Sherwood C, Hof P, Jacobs B (2014a) The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Struct Funct 220(6):3339–3368Google Scholar
  19. Butti C, Raghanti M, Gu X, Bonar C, Wicinski B, Wong E, Roman J, Brake A, Eaves E, Spocter M (2014b) The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology. Anat Rec 297(4):670–700CrossRefGoogle Scholar
  20. Byrne R, Bates L (2007) Sociality, evolution and cognition. Curr Biol 17(16):R714–R723PubMedCrossRefGoogle Scholar
  21. Casseday J, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. Integrative functions in the mammalian auditory pathway. Springer, Berlin, pp 238–318CrossRefGoogle Scholar
  22. Changizi M (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84(3):207–215PubMedCrossRefGoogle Scholar
  23. Charvet C, Finlay B (2012) Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. Prog Brain Res 195:71–87PubMedPubMedCentralCrossRefGoogle Scholar
  24. Charvet C, Striedter G, Finlay B (2011) Evo-devo and brain scaling: candidate developmental mechanisms for variation and constancy in vertebrate brain evolution. Brain Behav Evol 78(3):248–257PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Y (1979) On the cerebral anatomy of the Chinese river dolphin, Lipotes vexillifer Miller. Acta Hydrob Sin 4:365–372Google Scholar
  26. Clark C, Ellison W (2004) Potential use of low-frequency sounds by baleen whales for probing the environment: evidence from models and empirical measurements. In: Thomas J, Moss C, Vater M (eds) Echolocation in bats and dolphins. The University of Chicago Press, Chicago, pp 564–582Google Scholar
  27. Clark D, Mitra P, Wang S (2001) Scalable architecture in mammalian brains. Nature 411(6834):189–193PubMedCrossRefGoogle Scholar
  28. Connor R (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc B 362:587–602CrossRefGoogle Scholar
  29. Cooper F, Grube M, Von Kriegstein K, Kumar S, English P, Kelly T, Chinnery P, Griffiths T (2012) Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia 50(1):189–197PubMedCrossRefGoogle Scholar
  30. Covey E, Casseday J (1995) The lower brainstem auditory pathways. Hearing by bats. Springer, New York, pp 235–295CrossRefGoogle Scholar
  31. Covey E, Hall W, Kobler J (1987) Subcortical connections of the superior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 263(2):179–197PubMedCrossRefGoogle Scholar
  32. Dahlheim M, Heyning J (1999) Killer Whale— Orcinus orca (Linnaeus, 1758). In: Ridgway S, Harrison R (eds) Handbook of marine mammals: the second book of dolphins and porpoises, vol 6. Academic Press, LondonGoogle Scholar
  33. Dawson W, Hawthorne M, Jenkins R, Goldston R (1982) Giant neural systems in the inner retina and optic nerve of small whales. J Comp Neurol 205(1):1–7PubMedCrossRefGoogle Scholar
  34. De Graaf A (1967) Anatomical aspects of the cetacean brain stem, vol 5. Royal VanGorcum Ltd., The NetherlandsGoogle Scholar
  35. Dunbar R (1998) The social brain hypothesis. Brain 9:178–190Google Scholar
  36. Durban J, Pitman R (2012) Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations? Biol Lett 8(2):274–277PubMedCrossRefGoogle Scholar
  37. Eriksen N, Pakkenberg B (2007) Total neocortical cell number in the mysticete brain. Anat Rec 290(1):83–95CrossRefGoogle Scholar
  38. Fahlke J, Gingerich P, Welsh R, Wood A (2011) Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proc Natl Acad Sci 108(35):14545–14548PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fears S, Melega W, Lee C, Chen K, Tu Z, Jorgensen M, Fairbanks L, Cantor R, Freimer N, Woods R (2009) Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J Neurosci 29(9):2867–2875PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gao G, Zhou K (1991) The number of fibers and range of fiber diameters in the cochlear nerve of three odontocete species. Can J Zool 69(9):2360–2364CrossRefGoogle Scholar
  41. Gao G, Zhou K (1992) Fiber analysis of the optic and cochlear nerves of small cetaceans. Marine mammal sensory systems. Springer, Berlin, pp 39–52Google Scholar
  42. Garstang M (2010) Elephant infrasounds: long-range communication. In: Brudzynski S (ed) Handbook of mammalian vocalization—an integrative neuroscience approach, vol 19. Elsevier, Oxford, pp 57–67CrossRefGoogle Scholar
  43. Gatesy J, Geisler J, Chang J, Buell C, Berta A, Meredith R, Springer M, McGowen M (2013) A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66(2):479–506PubMedCrossRefGoogle Scholar
  44. Gihr M, Pilleri G (1969) On the anatomy and biometry of Stenella styx Gray and Delphinus delphis L. (Cetacea, Delphinidae) of the western Mediterranean. Investig Cetacea 1:15–65Google Scholar
  45. Gilissen E (2006) Scaling patterns of interhemispheric connectivity in eutherian mammals. Behav Brain Sci 29:16–17CrossRefGoogle Scholar
  46. Goble T, Møller A, Thompson L (2009) Acute high-intensity sound exposure alters responses of place cells in hippocampus. Hear Res 253(1):52–59PubMedCrossRefGoogle Scholar
  47. Goley P (1999) Behavioral aspects of sleep in Pacific White-Sided Dolphins (Lagenorhynchus obliquidens, Gill 1865). Mar Mamm Sci 15(4):1054–1064CrossRefGoogle Scholar
  48. Gompertz R (1902) Specific gravity of the brain. J Physiol 27(6):459–462PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gruenberger H (1970) On the cerebral anatomy of the Amazon dolphin, Inia geoffrensis. Investig Cetacea 2:129–144Google Scholar
  50. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann C, Menon V, Greicius M (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29(26):8586–8594PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haddad D, Huggenberger S, Haas-Rioth M, Kossatz L, Oelschläger H, Haase A (2012) Magnetic resonance microscopy of prenatal dolphins (Mammalia, Odontoceti, Delphinidae)—ontogenetic and phylogenetic implications. Zool Anz 251(2):115–130CrossRefGoogle Scholar
  52. Hakeem A, Hof P, Sherwood C, Switzer R, Rasmussen L, Allman J (2005) Brain of the African elephant (Loxodonta africana): neuroanatomy from magnetic resonance images. Anat Rec A 287(1):1117–1127CrossRefGoogle Scholar
  53. Hanson A, Grisham W, Sheh C, Annese J, Ridgway S (2013) Quantitative examination of the bottlenose dolphin cerebellum. Anat Rec 296:1215–1228CrossRefGoogle Scholar
  54. Haug H (1970) Der makroskopische Aufbau des Großhirns: qualitative und quantitative Untersuchungen an den Gehirnen des Menschen, der Delphinoideae und des Elefanten. ERG ANAT ENTW, vol 43(4). Springer, Berlin. Accessed 17 Feb 2015Google Scholar
  55. Herculano-Houzel S (2011) Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann NY Acad Sci 1225(1):191–199PubMedCrossRefGoogle Scholar
  56. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62(9):1377–1391PubMedCrossRefGoogle Scholar
  57. Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfírio J, Messeder D, Feijó L, Maldonado J, Manger P (2014) The elephant brain in numbers. Front Neuroanat 8:46. Accessed 30 Sep 2015Google Scholar
  58. Herman L (2010) What laboratory research has told us about dolphin cognition. Int J Comp Psychol 23(3):310–330Google Scholar
  59. Herman L, Pack A, Hoffmann-Kuhnt M (1998) Seeing through sound: Dolphins (Tursiops truncatus) perceive the spatial structure of objects through echolocation. J Comp Psychol 112(3):292–305PubMedCrossRefGoogle Scholar
  60. Herzing D (1996) Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat Mamm 22:61–80Google Scholar
  61. Hof P, Van Der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290(1):1–31CrossRefGoogle Scholar
  62. Hof P, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec A 287(1):1142–1152CrossRefGoogle Scholar
  63. Hofman M (1985) Size and shape of the cerebral cortex in mammals: I. The cortical surface. Brain Behav Evol 27(1):28–40PubMedCrossRefGoogle Scholar
  64. Hofman M (1988) Size and shape of the cerebral cortex in mammals. Brain Behav Evol 32(1):17–26PubMedCrossRefGoogle Scholar
  65. Hofman M (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32(2):137–158PubMedCrossRefGoogle Scholar
  66. Hofman M (2012) Design principles of the human brain: an evolutionary perspective. Prog Brain Res 195:373–390PubMedCrossRefGoogle Scholar
  67. Hofman M, Laan A, Uylings H (1986) Bivariate linear models in neurobiology: problems of concept and methodology. J Neurosci Methods 18(1):103–114PubMedCrossRefGoogle Scholar
  68. Hu K, Li Y, Gu X, Lei H, Zhang S (2006) Brain structures of echolocating and nonecholocating bats, derived in vivo from magnetic resonance images. Neuroreport 17(16):1743–1746PubMedCrossRefGoogle Scholar
  69. Hursh J (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol 127:131–139Google Scholar
  70. Hutcheon J, Kirsch J, Garland T (2002) A comparative analysis of brain size in relation to foraging ecology and phylogeny in the chiroptera. Brain Behav Evol 60(3):165–180PubMedCrossRefGoogle Scholar
  71. Jacobs M, Jensen A (1964) Gross aspects of the brain and a fiber analysis of cranial nerves in the great whale. J Comp Neurol 123(1):55–71PubMedCrossRefGoogle Scholar
  72. Jacobs M, McFarland W, Morgane P (1979) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon): the archicortex. Brain Res Bull 4(1):1–108PubMedCrossRefGoogle Scholar
  73. Joffe T (1997) Social pressures have selected for an extended juvenile period in primates. J Hum Evol 32(6):593–605PubMedCrossRefGoogle Scholar
  74. Kanwal J (2012) Right–left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats. Eur J Neurosci 35(2):257–270PubMedCrossRefGoogle Scholar
  75. Karenina K, Giljov A, Glazov D, Malashichev Y (2013a) Social laterality in wild beluga whale infants: comparisons between locations, escort conditions, and ages. Behav Ecol Sociobiol 67(7):1195–1204CrossRefGoogle Scholar
  76. Karenina K, Giljov A, Ivkovich T, Burdin A, Malashichev Y (2013b) Lateralization of spatial relationships between wild mother and infant orcas, Orcinus orca. Anim Behav 86(6):1225–1231CrossRefGoogle Scholar
  77. Kazu R, Maldonado J, Mota B, Manger P, Herculano-Houzel S (2014) Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front Neuroanat 8:128. Accessed 7 Oct 2015Google Scholar
  78. Keogh M, Ridgway S (2008) Neuronal fiber composition of the corpus callosum within some odontocetes. Anat Rec 291(7):781–789CrossRefGoogle Scholar
  79. Kilian A, von Fersen L, Güntürkün O (2000) Lateralization of visuospatial processing in the bottlenose dolphin (Tursiops truncatus). Behav Brain Res 116(2):211–215PubMedCrossRefGoogle Scholar
  80. Knoops A, Gerritsen L, van der Graaf Y, Mali W, Geerlings M (2010) Basal hypothalamic pituitary adrenal axis activity and hippocampal volumes: the SMART-Medea study. Biol Psychiatr 67(12):1191–1198CrossRefGoogle Scholar
  81. Kraus K, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1):34–46PubMedCrossRefGoogle Scholar
  82. Kraus K, Mitra S, Jimenez Z, Hinduja S, Ding D, Jiang H, Gray L, Lobarinas E, Sun W, Salvi R (2010) Noise trauma impairs neurogenesis in the rat hippocampus. Neurosci 167(4):1216–1226CrossRefGoogle Scholar
  83. Kretschmann H, Tafesse U, Herrmann A (1982) Different volume changes of cerebral cortex and white matter during histological preparation. Microsc Acta 86(1):13–24PubMedGoogle Scholar
  84. Ladygina T, Mass A, Supin A (1978) Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deyat 28(5):1047–1053Google Scholar
  85. Larsell O (1970) The comparative anatomy and histology of the cerebellum: from monotremes through apes, vol 2. University Of Minnesota Press, MinneapolisGoogle Scholar
  86. Lyamin O, Manger P, Ridgway S, Mukhametov L, Siegel J (2008) Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobehav Rev 32(8):1451–1484PubMedCrossRefGoogle Scholar
  87. MacNeilage P (2013) Vertebrate whole-body-action asymmetries and the evolution of right handedness: a comparison between humans and marine mammals. Dev Psychobiol 55(6):577–587PubMedCrossRefGoogle Scholar
  88. Madsen P, Lammers M, Wisniewska D, Beedholm K (2013) Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. J Exp Biol 216(21):4091–4102PubMedCrossRefGoogle Scholar
  89. Manger P (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81(02):293–338PubMedCrossRefGoogle Scholar
  90. Manger P (2013) Questioning the interpretations of behavioral observations of cetaceans: is there really support for a special intellectual status for this mammalian order? Neurosci 250:664–696CrossRefGoogle Scholar
  91. Manger P, Hemingway J, Haagensen M, Gilissen E (2010) Cross-sectional area of the elephant corpus callosum: comparison to other eutherian mammals. Neuroscience 167(3):815–824PubMedCrossRefGoogle Scholar
  92. Manger P, Prowse M, Haagensen M, Hemingway J (2012) Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. J Comp Neurol 520(11):2430–2439PubMedCrossRefGoogle Scholar
  93. Marino L (1998) A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav Evol 51(4):230–238PubMedCrossRefGoogle Scholar
  94. Marino L, Rilling J, Lin S, Ridgway S (2000) Relative volume of the cerebellum in dolphins and comparison with anthropoid primates. Brain Behav Evol 56(4):204–211PubMedCrossRefGoogle Scholar
  95. Marino L, Murphy T, Deweerd A, Morris J, Fobbs A, Humblot N, Ridgway S, Johnson J (2001a) Anatomy and three-dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images. Anat Rec 262(4):429–439PubMedCrossRefGoogle Scholar
  96. Marino L, Murphy T, Gozal L, Johnson J (2001b) Magnetic resonance imaging and three-dimensional reconstructions of the brain of a fetal common dolphin, Delphinus delphis. Anat Embryol 203(5):393–402PubMedCrossRefGoogle Scholar
  97. Marino L, Sudheimer K, Murphy T, Davis K, Pabst D, McLellan W, Rilling J, Johnson J (2001c) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264(4):397–414PubMedCrossRefGoogle Scholar
  98. Marino L, Sudheimer K, Pabst D, Mclellan W, Filsoof D, Johnson J (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268(4):411–429PubMedCrossRefGoogle Scholar
  99. Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson J (2003) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257(3):308–347PubMedCrossRefGoogle Scholar
  100. Marino L, McShea D, Uhen M (2004a) Origin and evolution of large brains in toothed whales. Anat Rec A 281(2):1247–1255CrossRefGoogle Scholar
  101. Marino L, Sherwood C, Delman B, Tang C, Naidich T, Hof P (2004b) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec A 281(2):1256–1263CrossRefGoogle Scholar
  102. Marino L, Sudheimer K, Mclellan W, Johnson J (2004c) Neuroanatomical structure of the spinner dolphin (Stenella longirostris orientalis) brain from magnetic resonance images. Anat Rec A 279(1):601–610CrossRefGoogle Scholar
  103. Marino L, Sudheimer K, Pabst D, McLellan W, Arshad S, Naini G, Johnson J (2004d) Anatomical description of an infant bottlenose dolphin (Tursiops truncatus) brain from magnetic resonance images. Aquat Mamm 30(2):315–326CrossRefGoogle Scholar
  104. Marino L, Butti C, Connor R, Fordyce R, Herman L, Hof P, Lefebvre L, Lusseau D, McCowan B, Nimchinsky E (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev 83(4):417–440PubMedGoogle Scholar
  105. Marrif H, Juurlink B (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57(2):255–260PubMedCrossRefGoogle Scholar
  106. Martín E, Fernández M, Perea G, Pascual O, Haydon P, Araque A, Ceña V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55(1):36–45PubMedCrossRefGoogle Scholar
  107. Maximino C (2009a) A quantitative test of the thermogenesis hypothesis of cetacean brain evolution, using phylogenetic comparative methods. Mar Freshw Behav Phy 42(1):1–17CrossRefGoogle Scholar
  108. Maximino C (2009b) Reply to Manger’s Commentary on “A quantitative test of the thermogenesis hypothesis of cetacean brain evolution, using phylogenetic comparative methods”. Mar Freshw Behav Phy 42(5):363–372CrossRefGoogle Scholar
  109. May P (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378PubMedCrossRefGoogle Scholar
  110. Mayes A, Montaldi D, Migo E (2007) Associative memory and the medial temporal lobes. Trends Cogn Sci 11(3):126–135PubMedCrossRefGoogle Scholar
  111. Mazzatenta A, Caleo M, Baldaccini N, Maffei L (2001) A comparative morphometric analysis of the optic nerve in two cetacean species, the striped dolphin (Stenella coeruleoalba) and fin whale (Balaenoptera physalus). Vis Neurosci 18:319–325PubMedCrossRefGoogle Scholar
  112. McArdle B (1988) The structural relationship: regression in biology. Can J Zool 66(11):2329–2339CrossRefGoogle Scholar
  113. McFarland W, Morgane P, Jacobs M (1969) Ventricular system of the brain of the dolphin, Tursiops truncatus, with comparative anatomical observations and relations to brain specializations. J Comp Neurol 135(3):275–367PubMedCrossRefGoogle Scholar
  114. McHugh T, Saykin A, Wishart H, Flashman L, Cleavinger H, Rabin L, Mamourian A, Shen L (2007) Hippocampal volume and shape analysis in an older adult population. Clin Neuropsychol 21(1):130–145PubMedPubMedCentralCrossRefGoogle Scholar
  115. Meredith M, Stein B (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662PubMedGoogle Scholar
  116. Meyer J (1981) A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals. Brain Behav Evol 18(1–2):60–71PubMedCrossRefGoogle Scholar
  117. Møhl B, Wahlberg M, Madsen P, Heerfordt A, Lund A (2003) The monopulsed nature of sperm whale clicks. J Acoust Soc Am 114(2):1143–1154PubMedCrossRefGoogle Scholar
  118. Montie E, Schneider G, Ketten D, Marino L, Touhey K, Hahn M (2007) Neuroanatomy of the subadult and fetal brain of the Atlantic White-sided Dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images. Anat Rec 290(12):1459–1479CrossRefGoogle Scholar
  119. Montie E, Schneider G, Ketten D, Marino L, Touhey K, Hahn M (2008) Volumetric neuroimaging of the Atlantic White-Sided Dolphin (Lagenorhynchus acutus) brain from in situ magnetic resonance images. Anat Rec 291(3):263–282CrossRefGoogle Scholar
  120. Montie E, Wheeler E, Pussini N, Battey T, Barakos J, Dennison S, Colegrove K, Gulland F (2010) Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid toxicosis. Dis Aquat Org 91(3):243–256PubMedCrossRefGoogle Scholar
  121. Moore P, Dankiewicz L, Houser D (2008) Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 124(5):3324–3332PubMedCrossRefGoogle Scholar
  122. Morey R, Petty C, Xu Y, Hayes J, Wagner H II, Lewis D, LaBar K, Styner M, McCarthy G (2009) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45(3):855–866PubMedCrossRefGoogle Scholar
  123. Morgane P, McFarland W, Jacobs M (1982) The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch 23(5):465–552PubMedGoogle Scholar
  124. Mortensen H, Pakkenberg B, Dam M, Dietz R, Sonne C, Mikkelsen B, Eriksen N (2014) Quantitative relationships in delphinid neocortex. Front Neuroanat 8:1–10CrossRefGoogle Scholar
  125. Ness A (1967) A measure of asymmetry of the skulls of odontocete whales. J Zool 153(2):209–221CrossRefGoogle Scholar
  126. Nummela S, Wägar T, Hemilä S, Reuter T (1999) Scaling of the cetacean middle ear. Hear Res 133(1):71–81PubMedCrossRefGoogle Scholar
  127. Oelschläger H (2008) The dolphin brain—a challenge for synthetic neurobiology. Brain Res Bull 75(2):450–459PubMedCrossRefGoogle Scholar
  128. Oelschläger H, Oelschläger J (2009) Brain. In: Perrin WF, Wursig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier, OxfordGoogle Scholar
  129. Oelschläger H, Haas-Rioth M, Fung C, Ridgway S, Knauth M (2007) Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain—MR imaging and conventional histology. Brain Behav Evol 71(1):68–86PubMedCrossRefGoogle Scholar
  130. Oelschläger H, Ridgway S, Knauth M (2010) Cetacean brain evolution: Dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis)–an investigation with high-resolution 3D MRI. Brain Behav Evol 75:33–62PubMedCrossRefGoogle Scholar
  131. Pack A, Herman L (1995) Sensory integration in the bottle nosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision. J Acoust Soc Am 98(2):722–733PubMedCrossRefGoogle Scholar
  132. Pakkenberg B, Gundersen H (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedCrossRefGoogle Scholar
  133. Panin M, Gabai G, Ballarin C, Peruffo A, Cozzi B (2012) Evidence of melatonin secretion in cetaceans: plasma concentration and extrapineal HIOMT-like presence in the bottlenose dolphin Tursiops truncatus. Gen Comp Endocr 177(2):238–245PubMedCrossRefGoogle Scholar
  134. Patzke N, Spocter M, Bertelsen M, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili A, Mohammed O (2013) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 1–23. Accessed 7 Oct 2015Google Scholar
  135. Payne R, Webb D (1971) Orientation by means of long range acoustic signaling in baleen whales. Ann NY Acad Sci 188(1):110–141PubMedCrossRefGoogle Scholar
  136. Pfrieger F, Barres B (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277(5332):1684–1687PubMedCrossRefGoogle Scholar
  137. Pierson R, Corson P, Sears L, Alicata D, Magnotta V, O’Leary D, Andreasen N (2002) Manual and semiautomated measurement of cerebellar subregions on MR images. Neuroimage 17(1):61–76PubMedCrossRefGoogle Scholar
  138. Pilleri G (1972) Cerebral anatomy of the Platanistidae (Platanista gangetica, Platanista indi, Pontoporia blainvillei, Inia geoffrensis). Investig Cetacea 4:44–70Google Scholar
  139. Pilleri G, Gihr M (1969) On the anatomy and behaviour of Risso’s dolphin (Grampus griseus G. Cuvier). Investig Cetacea 1:74-93. Accessed 26 Jan 2015Google Scholar
  140. Pilleri G, Gihr M (1970) The central nervous system of the mysticete and odontocete whales. Investig Cetacea 2:87–135Google Scholar
  141. Pilleri G, Gihr M (1972) Contribution to the knowledge of the cetaceans of Pakistan with particular reference to the genera Neomeris, Sousa, Delphinus, and Tursiops and description of a new Chinese porpoise (Neomeris asiaeorientalis). Investig Cetacea 4:107–162Google Scholar
  142. Pirlot P, Kamiya T (1985) Qualitative and quantitative brain morphology in the Sirenian Dugong dugong Erxl. J Zool Syst Evol Res 23(2):147–155CrossRefGoogle Scholar
  143. Poole J, Payne K, Langbauer W, Moss C (1988) The social contexts of some very low frequency calls of African elephants. Behav Ecol Sociobiol 22(6):385–392CrossRefGoogle Scholar
  144. Poth C, Fung C, Güntürkün O, Ridgway S, Oelschläger H (2005) Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale. Brain Res Bull 66(4):357–360PubMedCrossRefGoogle Scholar
  145. Quester R, Schröder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Meth 75(1):81–89CrossRefGoogle Scholar
  146. Rattenborg N, Amlaner C, Lima S (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24(8):817–842PubMedCrossRefGoogle Scholar
  147. Reader S, Laland K (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Nat Acad Sci 99(7):4436–4441PubMedPubMedCentralCrossRefGoogle Scholar
  148. Reep R, O’Shea T (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35(4):185–194PubMedCrossRefGoogle Scholar
  149. Reep R, Finlay B, Darlington R (2007) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70PubMedCrossRefGoogle Scholar
  150. Renaud D, Popper A (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63(3):569–585PubMedGoogle Scholar
  151. Ridgway S (1986) Physiological observations on dolphin brains. In: Schusterman R, Thomas J, Wood F (eds) Dolphin cognition and behavior: a comparative approach. pp 31–60. Accessed 26 Jan 2015Google Scholar
  152. Ridgway S (1990) The central nervous system of the bottlenose dolphin. In: Leatherwood S, Reeves R (eds) The bottlenose dolphin. pp 69–97. Accessed 8 Nov 2013Google Scholar
  153. Ridgway S (2000) The auditory central nervous system of dolphins. In: Au W, Popper A, Fay R (eds) Hearing by whales and dolphins. Springer, New York, pp 273–293CrossRefGoogle Scholar
  154. Ridgway S, Brownson R (1984) Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn 172:149–152Google Scholar
  155. Ridgway S, Hanson A (2014) Sperm whales and killer whales with the largest brains of all toothed whales show extreme differences in cerebellum. Brain Behav Evol 83(4):1–9CrossRefGoogle Scholar
  156. Ridgway S, Tarpley R (1996) Brain mass comparisons in Cetacea. Proc Int Assoc Aquat Anim Med 27:55–57Google Scholar
  157. Ridgway S, Bullock T, Carder D, Seeley R, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. Proc Natl Acad Sci 78(3):1943–1947PubMedPubMedCentralCrossRefGoogle Scholar
  158. Ridgway S, Marino L, Lipscomb T (2002) Description of a poorly differentiated carcinoma within the brainstem of a white whale (Delphinapterus leucas) from magnetic resonance images and histological analysis. Anat Rec 268(4):441–449PubMedCrossRefGoogle Scholar
  159. Ridgway S, Houser D, Finneran J, Carder D, Keogh M, Van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209(15):2902–2910PubMedCrossRefGoogle Scholar
  160. Rilling J, Insel T (1999a) Differential expansion of neural projection systems in primate brain evolution. Neuroreport 10(7):1453–1459PubMedCrossRefGoogle Scholar
  161. Rilling J, Insel T (1999b) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37(2):191–223PubMedCrossRefGoogle Scholar
  162. Ringo J (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38(1):1–6PubMedCrossRefGoogle Scholar
  163. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9(5):250–257PubMedCrossRefGoogle Scholar
  164. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22(23):10291–10301PubMedGoogle Scholar
  165. Säljö A, Bao F, Jingshan S, Hamberger A, Hansson H, Haglid K (2002) Exposure to short-lasting impulse noise causes neuronal c-Jun expression and induction of apoptosis in the adult rat brain. J Neurotraum 19(8):985–991CrossRefGoogle Scholar
  166. Schlenska G (1974) Volumen und Oberflächenmessungen an Gehirnen verschiedener Säugetiere im Vergleich zu einem errechneten Modell. J Hirnforsch 15:401–408Google Scholar
  167. Schulz G, Crooijmans H, Germann M, Scheffler K, Müller-Gerbl M, Müller B (2011) Three-dimensional strain fields in human brain resulting from formalin fixation. J Neurosci Methods 202(1):17–27PubMedCrossRefGoogle Scholar
  168. Seiffert E (2007) A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol Biol 7(1):224PubMedPubMedCentralCrossRefGoogle Scholar
  169. Shoshani J, Kupsky W, Marchant G (2006) Elephant brain: Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res Bull 70(2):124–157PubMedCrossRefGoogle Scholar
  170. Shultz S, Dunbar R (2006) Both social and ecological factors predict ungulate brain size. Proc R Soc B 273(1583):207–215PubMedCrossRefGoogle Scholar
  171. Sinha S, Moss C (2007) Vocal premotor activity in the superior colliculus. J Neurosci 27(1):98–110PubMedCrossRefGoogle Scholar
  172. Širović A, Hildebrand J, Wiggins S (2007) Blue and fin whale call source levels and propagation range in the Southern Ocean. J Acoust Soc Am 122(2):1208–1215PubMedCrossRefGoogle Scholar
  173. Smith R (2005) Relative size versus controlling for size. Curr Anthropol 46(2):249–273CrossRefGoogle Scholar
  174. Stein B, Meredith M, Huneycutt W, McDade L (1989) Behavioral indices of multisensory integration: orientation to visual cues is affected by auditory stimuli. J Cogn Neurosci 1(1):12–24PubMedCrossRefGoogle Scholar
  175. Stephan H (1960) Methodische studien über den quantitativen vergleich architektonischer struktureinheiten des gehirns. Z Wiss Zool 164:143–172Google Scholar
  176. Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29PubMedCrossRefGoogle Scholar
  177. Swanson R, Farrell K, Stein B (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21(1):142–153PubMedCrossRefGoogle Scholar
  178. Sweatt J (2003) The hippocampus serves a role in multimodal information processing, and memory consolidation. Mechanisms of memory. Elsevier Academic Press, OxfordGoogle Scholar
  179. Tarpley R, Ridgway S (1994) Corpus callosum size in delphinid cetaceans. Brain Behav Evol 44(3):156–165PubMedCrossRefGoogle Scholar
  180. Tyack P (1999) Communication and cognition. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, pp 287–323Google Scholar
  181. Tyack P (2000) Functional aspects of cetacean communication. In: Mann J, Connor R, Tyack P, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, pp 270–307Google Scholar
  182. Tyack P, Clark C (2000) Communication and acoustic behavior of dolphins and whales. In: Au W, Popper A, Fay R (eds) Hearing by whales and dolphins. Springer, New York, pp 156–224CrossRefGoogle Scholar
  183. Ullian E, Sapperstein S, Christopherson K, Barres B (2001) Control of synapse number by glia. Science 291(5504):657–661PubMedCrossRefGoogle Scholar
  184. Valentine D, Moss C (1997) Spatially selective auditory responses in the superior colliculus of the echolocating bat. J Neurosci 17(5):1720–1733PubMedGoogle Scholar
  185. Verkhratsky A, Butt A (2013) Neuroglia: definition, classification, evolution, numbers, development. Glial physiology and pathophysiology, 1st edn. Wiley, New York, pp 73–104CrossRefGoogle Scholar
  186. von Fersen L, Schall U, Güntürkün O (2000) Visual lateralization of pattern discrimination in the bottlenose dolphin (Tursiops truncatus). Behav Brain Res 107(1):177–181CrossRefGoogle Scholar
  187. Walhovd K, Westlye L, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat D, Greve D, Fischl B (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32(5):916–932PubMedCrossRefGoogle Scholar
  188. Walløe S, Eriksen N, Dabelsteen T, Pakkenberg B (2010) A neurological comparative study of the harp seal (Pagophilus groenlandicus) and harbor porpoise (Phocoena phocoena) brain. Anat Rec 293(12):2129–2135CrossRefGoogle Scholar
  189. Wartzok D, Ketten D (1999) Marine mammal sensory systems. In: Reynolds J, Rommel S (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, pp 117–174Google Scholar
  190. Washington S, Kanwal J (2012) Sex-dependent hemispheric asymmetries for processing frequency-modulated sounds in the primary auditory cortex of the mustached bat. J Neurophysiol 108(6):1548–1566PubMedPubMedCentralCrossRefGoogle Scholar
  191. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442PubMedCrossRefGoogle Scholar
  192. Waxman S (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3(2):141–150PubMedCrossRefGoogle Scholar
  193. Wen Q, Chklovskii D (2005) Segregation of the brain into gray and white matter: a design minimizing conduction delays. Plos Comput Biol 1(7):e78PubMedPubMedCentralCrossRefGoogle Scholar
  194. Whitehead H, Mann J (2000) Female reproductive strategies of cetaceans. In: Mann J, Connor R, Tyack P, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, pp 219–246Google Scholar
  195. Wislocki G (1929) The hypophysis of the porpoise (Tursiops truncatus). Arch Surg 18(4):1403–1412CrossRefGoogle Scholar
  196. Würsig B (2009) Intelligence and cognition. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals, 2nd edn. Academic Press, Cambridge, pp 616–623CrossRefGoogle Scholar
  197. Yaman S, von Fersen L, Dehnhardt G, Güntürkün O (2003) Visual lateralization in the bottlenose dolphin (Tursiops truncatus): evidence for a population asymmetry? Behav Brain Res 142(1):109–114PubMedCrossRefGoogle Scholar
  198. Yamazaki Y, Hozumi Y, Kaneko K, Sugihara T, Fujii S, Goto K, Kato H (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3(04):325–334PubMedCrossRefGoogle Scholar
  199. Zhang K, Sejnowski T (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Nat Acad Sci 97(10):5621–5626PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexandra Wright
    • 1
  • Miriam Scadeng
    • 2
  • Dominik Stec
    • 2
  • Rebecca Dubowitz
    • 2
  • Sam Ridgway
    • 3
  • Judy St. Leger
    • 4
  1. 1.Center for Marine Biotechnology and Biomedicine, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Center for Functional MRI, Department of RadiologyUniversity of California, San DiegoLa JollaUSA
  3. 3.National Marine Mammal FoundationSan DiegoUSA
  4. 4.SeaWorld San DiegoSan DiegoUSA

Personalised recommendations