Brain Structure and Function

, Volume 222, Issue 1, pp 267–285 | Cite as

Meta-analytic connectivity modeling of the human superior temporal sulcus

  • Laura C. Erickson
  • Josef P. Rauschecker
  • Peter E. Turkeltaub
Original Article

Abstract

The superior temporal sulcus (STS) is a critical region for multiple neural processes in the human brain Hein and Knight (J Cogn Neurosci 20(12): 2125–2136, 2008). To better understand the multiple functions of the STS it would be useful to know more about its consistent functional coactivations with other brain regions. We used the meta-analytic connectivity modeling technique to determine consistent functional coactivation patterns across experiments and behaviors associated with bilateral anterior, middle, and posterior anatomical STS subregions. Based on prevailing models for the cortical organization of audition and language, we broadly hypothesized that across various behaviors the posterior STS (pSTS) would coactivate with dorsal-stream regions, whereas the anterior STS (aSTS) would coactivate with ventral-stream regions. The results revealed distinct coactivation patterns for each STS subregion, with some overlap in the frontal and temporal areas, and generally similar coactivation patterns for the left and right STS. Quantitative comparison of STS subregion coactivation maps demonstrated that the pSTS coactivated more strongly than other STS subregions in the same hemisphere with dorsal-stream regions, such as the inferior parietal lobule (only left pSTS), homotopic pSTS, precentral gyrus and supplementary motor area. In contrast, the aSTS showed more coactivation with some ventral-stream regions, such as the homotopic anterior temporal cortex and left inferior frontal gyrus, pars orbitalis (only right aSTS). These findings demonstrate consistent coactivation maps across experiments and behaviors for different anatomical STS subregions, which may help future studies consider various STS functions in the broader context of generalized coactivations for individuals with and without neurological disorders.

Keywords

Superior temporal sulcus Coactivation Meta-analytic connectivity modeling Connectivity Network Dorsal stream 

Supplementary material

429_2016_1215_MOESM1_ESM.pdf (58 kb)
Supplemental Table 1. Behavioral analysis of STS ROIs. Behavioral categories were statistically over-represented in the ROI if Z scores were ≥ 3.0, suggesting that the behavioral category had more clustering of foci than predicted by equal distribution of all foci across the brain (see Lancaster et al. (2012) for more details on this method). This analysis was conducted on 12-4-2015 after the original BrainMap search, and these results reflect a different composition of behavioral categories as the BrainMap database has likely changed since the original search, e.g., more experiments added. While this analysis demonstrates that certain behaviors engage these ROIs more often than the rest of the brain, Tables 2 and 3 demonstrate that our dataset includes experiments involving a wide variety of behaviors. Thus, the MACM results reflect general patterns of coactivation across experiments and behaviors. This is supported by STS coactivation findings that are consistent not only with auditory/language models, but also other cognitive functions involving the STS (See Discussion). (PDF 57 kb)
429_2016_1215_MOESM2_ESM.tif (39.8 mb)
Supplemental Fig. 1. The comparison of posterior STS in the left and right hemispheres. The LpSTS (purple) had more coactivation than the RpSTS in areas such as the left IFG and left anterior STG. In contrast, the RpSTS (red) had greater coactivation compared to the LpSTS in areas such as right precentral gyrus and right supramarginal gyrus. (TIFF 40742 kb)
429_2016_1215_MOESM3_ESM.tif (38.4 mb)
Supplemental Fig. 2. The comparison of middle STS in the left and right hemispheres. The LmSTS (yellow) had more coactivation compared to the RmSTS in regions such as the left IFG and left posterior MTG. In contrast, the RmSTS (green) compared to the LmSTS had more coactivation in multiple regions, such as bilateral subcortical regions, bilateral precentral/postcentral gyrus, bilateral IPL, and left calcarine cortex. (TIFF 39292 kb)
429_2016_1215_MOESM4_ESM.tif (42.7 mb)
Supplemental Fig. 3. The comparison of anterior STS in the left and right hemispheres. The LaSTS (light blue) as compared to the RaSTS had more coactivation only in left posterior MTG. In contrast, the RaSTS (dark blue) as compared to the LaSTS had more coactivation in bilateral posterior STG and left postcentral gyrus. (TIFF 43683 kb)

References

  1. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4(7):267–278. doi:10.1016/S1364-6613(00)01501-1 CrossRefPubMedGoogle Scholar
  2. Beauchamp MS (2005) See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr Opin Neurobiol 15(2):145–153. doi:10.1016/j.conb.2005.03.011 CrossRefPubMedGoogle Scholar
  3. Beauchamp MS (2011) Biological motion and multisensory integration: the role of the superior temporal sulcus. In: Adams RB (ed) The science of social vision, vol 7, pp 409–420. Oxford University Press, New YorkGoogle Scholar
  4. Beauchamp MS (2012) Multisensory integration in the human superior temporal sulcus. In: Stein BE (ed) The new handbook of multisensory processing, pp 179–191. The MIT Press, Cambridge, MAGoogle Scholar
  5. Beauchamp MS (2015) The social mysteries of the superior temporal sulcus. Trends Cogn Sci 19(9):489–490. doi:10.1016/j.tics.2015.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7(11):1190–1192. doi:10.1038/Nn1333 CrossRefPubMedGoogle Scholar
  7. Beauchamp MS, Nath AR, Pasalar S (2010) fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J Neurosci 30(7):2414–2417. doi:10.1523/Jneurosci.4865-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beer AL, Plank T, Greenlee MW (2011) Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex. Exp Brain Res 213(2–3):299–308. doi:10.1007/S00221-011-2715-Y CrossRefPubMedGoogle Scholar
  9. Beer AL, Plank T, Meyer G, Greenlee MW (2013) Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing. Front Integr Neurosci 7:5. doi:10.3389/fnint.2013.00005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bernstein LE, Liebenthal E (2014) Neural pathways for visual speech perception. Front Neurosci 8:386. doi:10.3389/fnins.2014.00386 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bishop CW, Miller LM (2009) A Multisensory cortical network for understanding speech in noise. J Cogn Neurosci 21(9):1790–1804. doi:10.1162/Jocn.2009.21118 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blank H, Anwander A, von Kriegstein K (2011) Direct structural connections between voice- and face-recognition areas. J Neurosci 31(36):12906–12915. doi:10.1523/Jneurosci.2091-11.2011 CrossRefPubMedGoogle Scholar
  13. Bonte M, Frost MA, Rutten S, Ley A, Formisano E, Goebel R (2013) Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex. Neuroimage 83:739–750. doi:10.1016/j.neuroimage.2013.07.017 CrossRefPubMedGoogle Scholar
  14. Bornkessel-Schlesewsky I, Schlesewsky M, Small SL, Rauschecker JP (2015) Neurobiological roots of language in primate audition: common computational properties. Trends Cogn Sci. doi:10.1016/j.tics.2014.12.008 PubMedCentralGoogle Scholar
  15. Buchsbaum BR, Olsen RK, Koch P, Berman KF (2005) Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron 48(4):687–697. doi:10.1016/J.Neuron.09.029 CrossRefPubMedGoogle Scholar
  16. Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Cauda F, Cavanna AE, D’Agata F, Sacco K, Duca S, Geminiani GC (2011) Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci 23(10):2864–2877. doi:10.1162/jocn.2011.21624 CrossRefPubMedGoogle Scholar
  18. Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127(2):251–263. doi:10.1016/j.bandl.2012.08.003 CrossRefPubMedGoogle Scholar
  19. Deen B, Pitskel NB, Pelphrey KA (2011) Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex 21(7):1498–1506. doi:10.1093/Cercor/Bhq186 CrossRefPubMedGoogle Scholar
  20. Deen B, Koldewyn K, Kanwisher N, Saxe R (2015) Functional organization of social perception and cognition in the superior temporal sulcus. Cereb Cortex 25(11):4596–4609. doi:10.1093/cercor/bhv111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. DeWitt I, Rauschecker JP (2012) Phoneme and word recognition in the auditory ventral stream. Proc Natl Acad Sci USA 109(8):E505–E514. doi:10.1073/pnas.1113427109 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57(1):11–23. doi:10.1016/J.Neuron.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi:10.1002/Hbm.20718 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57(3):938–949. doi:10.1016/J.Neuroimage.05.021 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361. doi:10.1016/J.Neuroimage.09.017 CrossRefPubMedGoogle Scholar
  26. Erickson LC, Heeg E, Rauschecker JP, Turkeltaub PE (2014) An ALE meta-analysis on the audiovisual integration of speech signals. Hum Brain Mapp 35(11):5587–5605. doi:10.1002/hbm.22572 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fox PT, Lancaster JL (2002) Mapping context and content: the BrainMap model. Nat Rev Neurosci 3(4):319–321. doi:10.1038/Nrn789 CrossRefPubMedGoogle Scholar
  28. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25(1):185–198. doi:10.1002/Hbm.20141 CrossRefPubMedGoogle Scholar
  29. Frey S, Campbell JS, Pike GB, Petrides M (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28(45):11435–11444. doi:10.1523/JNEUROSCI.2388-08.2008 CrossRefPubMedGoogle Scholar
  30. Frey S, Mackey S, Petrides M (2014) Cortico-cortical connections of areas 44 and 45B in the macaque monkey. Brain Lang 131:36–55. doi:10.1016/J.Bandl.05.005 CrossRefPubMedGoogle Scholar
  31. Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4(3):179–192. doi:10.1038/Nrn1057 CrossRefPubMedGoogle Scholar
  32. Grezes J, Valabregue R, Gholipour B, Chevallier C (2014) A direct amygdala-motor pathway for emotional displays to influence action: a diffusion tensor imaging study. Hum Brain Mapp 35(12):5974–5983. doi:10.1002/hbm.22598 CrossRefPubMedGoogle Scholar
  33. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12(5):711–720. doi:10.1162/089892900562417 CrossRefPubMedGoogle Scholar
  34. Habas C, Guillevin R, Abanou A (2011) Functional connectivity of the superior human temporal sulcus in the brain resting state at 3T. Neuroradiology 53(2):129–140. doi:10.1007/S00234-010-0775-5 CrossRefPubMedGoogle Scholar
  35. Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233. doi:10.1016/S1364-6613(00)01482-0 CrossRefPubMedGoogle Scholar
  36. Hein G, Knight RT (2008) Superior temporal sulcus-it’s my area: or is it? J Cogn Neurosci 20(12):2125–2136. doi:10.1162/Jocn.2008.20148 CrossRefPubMedGoogle Scholar
  37. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393–402. doi:10.1038/nrn2113 CrossRefPubMedGoogle Scholar
  38. Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205PubMedGoogle Scholar
  39. Iacoboni M (2005) Neural mechanisms of imitation. Curr Opin Neurobiol 15(6):632–637. doi:10.1016/j.conb.2005.10.010 CrossRefPubMedGoogle Scholar
  40. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7(12):942–951. doi:10.1038/nrn2024 CrossRefPubMedGoogle Scholar
  41. Iidaka T, Miyakoshi M, Harada T, Nakai T (2012) White matter connectivity between superior temporal sulcus and amygdala is associated with autistic trait in healthy humans. Neurosci Lett 510(2):154–158. doi:10.1016/J.Neulet.01.029 CrossRefPubMedGoogle Scholar
  42. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60(4):2389–2398. doi:10.1016/j.neuroimage.2012.02.037 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97(22):11793–11799. doi:10.1073/pnas.97.22.11793 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lahnakoski JM, Glerean E, Salmi J, Jaaskelainen I, Sams M, Hari R, Nummenmaa L (2012) Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Front Hum Neurosci 6. doi:10.3389/Fnhum.2012.00233
  45. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005a) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25(1):155–164. doi:10.1002/Hbm.20136 CrossRefPubMedGoogle Scholar
  46. Laird AR, Lancaster JL, Fox PT (2005b) BrainMap—the social evolution of a human brain mapping database. Neuroinformatics 3(1):65–77. doi:10.1385/Ni:3:1:065 CrossRefPubMedGoogle Scholar
  47. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23. doi:10.3389/neuro.11.023.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of task co-activations. Neuroimage 80:505–514. doi:10.1016/J.Neuroimage.04.073 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lancaster JL, Laird AR, Eickhoff SB, Martinez MJ, Fox PM, Fox PT (2012) Automated regional behavioral analysis for human brain images. Front Neuroinform 6:23. doi:10.3389/fninf.2012.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J Neurosci 30(22):7604–7612. doi:10.1523/JNEUROSCI.0296-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Leroy F, Cai Q, Bogart SL, Dubois J, Coulon O, Monzalvo K, Fischer C, Glasel H, Van der Haegen L, Benezit A, Lin CP, Kennedy DN, Ihara AS, Hertz-Pannier L, Moutard ML, Poupon C, Brysbaert M, Roberts N, Hopkins WD, Mangin JF, Dehaene-Lambertz G (2015) New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc Natl Acad Sci USA 112(4):1208–1213. doi:10.1073/pnas.1412389112 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liebenthal E, Desai RH, Humphries C, Sabri M, Desai A (2014) The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults. Front Neurosci 8:289. doi:10.3389/fnins.2014.00289 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luppino G, Calzavara R, Rozzi S, Matelli M (2001) Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur J Neurosci 14(6):1035–1040CrossRefPubMedGoogle Scholar
  54. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area h0c5. Cereb Cortex 17(3):562–574. doi:10.1093/Cercor/Bhj181 CrossRefPubMedGoogle Scholar
  55. Margulies DS, Petrides M (2013) Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production. J Neurosci 33(42):16846–16852. doi:10.1523/Jneurosci.2259-13.2013 CrossRefPubMedGoogle Scholar
  56. Nath AR, Beauchamp MS (2011) Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech. J Neurosci 31(5):1704–1714. doi:10.1523/Jneurosci.4853-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Noesselt T, Rieger JW, Schoenfeld MA, Kanowski M, Hinrichs H, Heinze HJ, Driver J (2007) Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. J Neurosci 27(42):11431–11441. doi:10.1523/Jneurosci.2252-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Noesselt T, Bergmann D, Heinze HJ, Munte T, Spence C (2012) Coding of multisensory temporal patterns in human superior temporal sulcus. Front Integr Neurosci 6:64. doi:10.3389/fnint.2012.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ochiai T, Grimault S, Scavarda D, Roch G, Hori T, Riviere D, Mangin JF, Regis J (2004) Sulcal pattern and morphology of the superior temporal sulcus. Neuroimage 22(2):706–719. doi:10.1016/J.Neuroimage.01.023 CrossRefPubMedGoogle Scholar
  60. Petkov CI, Kikuchi Y, Milne AE, Mishkin M, Rauschecker JP, Logothetis NK (2015) Different forms of effective connectivity in primate frontotemporal pathways. Nat Commun 6:6000. doi:10.1038/ncomms7000 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Powers AR, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32(18):6263–6274. doi:10.1523/Jneurosci.6138-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12(6):718–724. doi:10.1038/Nn.2331 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97(22):11800–11806. doi:10.1073/pnas.97.22.11800 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Redcay E (2008) The superior temporal sulcus performs a common function for social and speech perception. Neurosci Biobehav 32(1):123–142. doi:10.1016/J.Neubiorev.2007.06.004 CrossRefGoogle Scholar
  65. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31(2):173–184. doi:10.1002/Hbm.20854 PubMedPubMedCentralGoogle Scholar
  66. Robinson JL, Laird AR, Glahn DC, Blangero J, Sanghera MK, Pessoa L, Fox PM, Uecker A, Friehs G, Young KA, Griffin JL, Lovallo WR, Fox PT (2012) The functional connectivity of the human caudate: an application of meta-analytic connectivity modeling with behavioral filtering. Neuroimage 60(1):117–129. doi:10.1016/j.neuroimage.2011.12.010 CrossRefPubMedGoogle Scholar
  67. Rockland KS, Pandya DN (1981) Cortical connections of the occipital lobe in the Rhesus-Monkey—interconnections between areas 17, 18, 19 and the superior temporal sulcus. Brain Res 212(2):249–270. doi:10.1016/0006-8993(81)90461-3 CrossRefPubMedGoogle Scholar
  68. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2(12):1131–1136. doi:10.1038/16056 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Said CP, Moore CD, Engell AD, Todorov A, Haxby JV (2010) Distributed representations of dynamic facial expressions in the superior temporal sulcus. J Vis 10(5). doi:10.1167/10.5.11
  70. Seltzer B, Pandya DN (1989) Frontal-Lobe Connections of the Superior temporal sulcus in the Rhesus-Monkey. J Comp Neurol 281(1):97–113. doi:10.1002/Cne.902810108 CrossRefPubMedGoogle Scholar
  71. Seltzer B, Pandya DN (1994) Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343(3):445–463. doi:10.1002/cne.903430308 CrossRefPubMedGoogle Scholar
  72. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3):1064–1080. doi:10.1016/j.neuroimage.2007.09.031 CrossRefPubMedGoogle Scholar
  73. Shih P, Keehn B, Oram JK, Leyden KM, Keown CL, Muller RA (2011) Functional differentiation of posterior superior temporal sulcus in autism: a functional connectivity magnetic resonance imaging study. Biol Psychiatry 70(3):270–277. doi:10.1016/J.Biopsych.03.040 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Simmons WK, Martin A (2012) Spontaneous resting-state BOLD fluctuations reveal persistent domain-specific neural networks. Soc Cogn Affect Neurosci 7(4):467–475. doi:10.1093/Scan/Nsr018 CrossRefPubMedGoogle Scholar
  75. Sokolov AA, Erb M, Gharabaghi A, Grodd W, Tatagiba MS, Pavlova MA (2012) Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage 59(3):2824–2830. doi:10.1016/J.Neuroimage.08.039 CrossRefPubMedGoogle Scholar
  76. Sokolov AA, Erb M, Grodd W, Pavlova MA (2014) Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex 24(3):626–632. doi:10.1093/Cercor/Bhs346 CrossRefPubMedGoogle Scholar
  77. Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 44(3):1210–1223. doi:10.1016/J.Neuroimage.09.034 CrossRefPubMedGoogle Scholar
  78. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292(5515):290–293. doi:10.1126/science.1058911 CrossRefPubMedGoogle Scholar
  79. Turk-Browne NB, Norman-Haignere SV, McCarthy G (2010) Face-specific resting functional connectivity between the fusiform gyrus and posterior superior temporal sulcus. Front Hum Neurosci 4. doi:10.3389/Fnhum.2010.00176
  80. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3):765–780. doi:10.1006/Nimg.2002.1131 CrossRefPubMedGoogle Scholar
  81. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13. doi:10.1002/Hbm.21186 CrossRefPubMedGoogle Scholar
  82. Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1. doi:10.3389/fnsys.2011.00001 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi:10.1006/nimg.2001.0978 CrossRefPubMedGoogle Scholar
  84. van Atteveldt N, Roebroeck A, Goebel R (2009) Interaction of speech and script in human auditory cortex: insights from neuro-imaging and effective connectivity. Hearing Res 258(1–2):152–164. doi:10.1016/J.Heares.05.007 CrossRefGoogle Scholar
  85. Warren JE, Wise RJ, Warren JD (2005) Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci 28(12):636–643. doi:10.1016/j.tins.2005.09.010 CrossRefPubMedGoogle Scholar
  86. Yeterian EH, Pandya DN (1991) Corticothalamic connections of the superior temporal sulcus in rhesus monkeys. Exp Brain Res 83(2):268–284CrossRefPubMedGoogle Scholar
  87. Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR (2014) Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. Cereb Cortex 24(1):232–248. doi:10.1093/Cercor/Bhs308 CrossRefPubMedGoogle Scholar
  88. Zhang H, Tian J, Liu JG, Li J, Lee K (2009) Intrinsically organized network for face perception during the resting state. Neurosci Lett 454(1):1–5. doi:10.1016/J.Neulet.02.054 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zilbovicius M, Meresse I, Chabane N, Brunelle F, Samson Y, Boddaert N (2006) Autism, the superior temporal sulcus and social perception. Trends Neurosci 29(7):359–366. doi:10.1016/J.Tins.06.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Laura C. Erickson
    • 1
    • 2
  • Josef P. Rauschecker
    • 2
    • 3
  • Peter E. Turkeltaub
    • 1
    • 4
  1. 1.Neurology DepartmentGeorgetown University Medical CenterWashingtonUSA
  2. 2.Neuroscience DepartmentGeorgetown University Medical CenterWashingtonUSA
  3. 3.Institute for Advanced StudyTechnische Universität MünchenGarching bei MünchenGermany
  4. 4.Research DivisionMedStar National Rehabilitation HospitalWashingtonUSA

Personalised recommendations