Microarray analysis of transcripts with elevated expressions in the rat medial or lateral habenula suggest fast GABAergic excitation in the medial habenula and habenular involvement in the regulation of feeding and energy balance


In vertebrates the “anti-reward-system” mainly is represented by the habenula and its medial (MHb) and especially lateral (LHb) complexes. Considerable knowledge has accumulated concerning subnuclear structures and connectivities of MHb and LHb subnuclei. The present investigation aimed to obtain novel information, whether MHb or LHb or their subnuclei display field-characteristic gene products, which may shed light on biological functions of these areas. Unfortunately this was not the case. Microarray analysis of mRNAs in microdissected habenular and thalamic control areas yielded expression values of 17,745 RNAs representing protein-coding genes, to which annotated gene names could be assigned. High relative values of genes with known expression in MHb, LHb or thalamus in the corresponding areas indicated a high precision of the microdissection procedure. Note that the present report emphasizes differences between and not absolute expression values in the selected regions. The present investigation disclosed that the LHb genetically is much closer related to the thalamus as compared to the MHb. The results presented here focuse on gene transcripts related to major transmitter systems, catecholamines and neuropeptides. Quite surprisingly, our data indicate potentially inhibitory effects of acetylcholine and glutamate in the habenula. In addition, the absence of the K-Cl co-transporter 2 supports a largely excitatory role of GABAergic transmission especially in the MHb. Furthermore, several G-protein related receptors (Gpr83, Gpr139, Gpr149, Gpr151, Gpr158) and many neuropeptides related to feeding are differentially expressed in the habenular region, indicating that its involvement in the regulation of food consumption and energy expenditure may have been underestimated so far.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Aizawa H, Kobayashi M, Tanaka SC, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520:4051–4066

  2. Andres KH, von Düring M, Veh RW (1999) Subnuclear organization of the rat habenular complexes. J Comp Neurol 407:130–150

  3. Araki M, McGeer PL, Kimura H (1988) The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method. Brain Res 441:319–330

  4. Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: exploring the brain. Williams and Wilkins, Baltimore

  5. Begriche K, Girardet C, McDonald P, Butler AA (2013) Melanocortin-3 receptors and metabolic homeostasis. Progr Mol Biol Transl Sci 114:109–146

  6. Bernard R, Veh RW (2012) Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei. J Comp Neurol 520:2545–2558

  7. Berthold M, Collin M, Sejlitz T, Meister B, Lind P (2003) Cloning of a novel orphan G protein-coupled receptor (GPCR-2037): in situ hybridization reveals high mRNA expression in rat brain restricted to neurons of the habenular complex. Mol Brain Res 120:22–29

  8. Bjursell M, Ahnmark A, Bohlooly-Y M, William-Olsson L, Rhedin M, Peng XR, Ploj K, Gerdin AK, Arnerup G, Elmgren A, Berg AL, Oscarsson J, Linden D (2007) Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 56:583–593

  9. Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine(1B) receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

  10. Brinschwitz K, Dittgen A, Madai VI, Lommel R, Geisler S, Veh RW (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168:463–476

  11. Broms J, Antolin-Fontes B, Tingström A, Ibañez-Tallon I (2015) Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J Comp Neurol 523:359–380

  12. Brown AA, Jensen J, Nikolova YS, Djurovic S, Agartz I, Server A, Ferrell RE, Manuck SB, Mattingsdal M, Melle I, Hariri AR, Frigessi A, Andreassen OA (2012) Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Transl Psychiatry 2:e143

  13. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat Rev Neurosci 8:182–193

  14. Canela L, Luján R, Lluís C, Burgueño J, Mallol J, Canela EI, Franco R, Ciruela F (2007) The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Mol Cell Neurosci 36:1–12

  15. Capogna M, Pearce RA (2011) GABAA, slow: causes and consequences. Trends Neurosci 34:101–112

  16. Carter MS, Krause JE (1990) Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide Y. J Neurosci 70:2203–2214

  17. Chamma I, Chevy Q, Poncer JC, Lévi S (2012) Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci 6, article 5:1

  18. Chastrette N, Pfaff DW, Gibbs RB (1991) Effects of daytime and nighttime stress on Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, the habenula, and the posterior paraventricular nucleus of the thalamus. Brain Res 563:339–344

  19. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmentum area of the rat. J Neurosci 6:613–619

  20. De Jong TR, Measor KT, Chauke M, Harris BN, Saltzman W (2010) Brief pup exposure induces Fos-expession in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male california mice (Peromyscus californicus). Neuroscience 169:1094–1104

  21. Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9(e87709):1–12

  22. Gardiner JV, Beale KE, Roy D, Boughton CK, Bataveljic A, Campbell DC, Bewick GA, Patel NA, Patterson M, Leavy EM, Ghatei MA, Bloom SR, Dhillo WS (2010) Cerebellin1 is a novel orexigenic peptide. Diabetes Obes Metab 12:883–890

  23. Geisler S, Heilmann H, Veh RW (2002) An optimized method for simultaneous demonstration of neurons and myelinated fiber tracts for delineation of individual trunco- and palliothalamic nuclei in the mammalian brain. Histochem Cell Biol 117:69–79

  24. Geisler S, Andres KH, Veh RW (2003) Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J Comp Neurol 458:78–97

  25. Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743

  26. Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17:669–681

  27. Goncalves L, Sego C, Metzger M (2012) Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 520:1278–1300

  28. Good CH, Wang H, Chen YH, Mejias-Aponte CA, Hoffman AF, Lupica CR (2013) Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. J Neurosci 43:16853–16864

  29. Görlich A, Antolin-Fontes B, Ables JL, Frahm S, Slimak MA, Dougherty JD, Ibañez-Tallon I (2013) Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proc Nat Acad Sci USA 110:17077–17082

  30. Görtzen A (1993) Neurotensin-Immunreaktivität im Habenularkomplex der Ratte. Ruhr-Universität, Bochum, GFR, p 68

  31. Gras C, Herzog E, Bellenchi GC, Bernard B, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

  32. Gruber C, Kahl A, Lebenheim L, Kowski A, Dittgen A, Veh RW (2007) Dopaminergic projections from the VTA substantially contribute to the mesohabenular pathway in the rat. Neurosci Lett 427:165–170

  33. Guilding C, Hughes ATL, Piggins HD (2010) Circadian oscillators in the Epithalamus. Neuroscience 169:1630–1639

  34. Gundlach AL, Knobe KE (1992) Distribution of preproatrial natriuretic peptide mRNA in rat brain detected by in situ hybridization of DNA oligonucleotides: enrichment in hypothalamic and limbic regions. J Neurochem 59:758–761

  35. Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

  36. Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 18:19–48

  37. Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S (2004) Localization of vGluT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123:983–1002

  38. Hsu YWA, Tempest L, Quina LA, Wei AD, Zeng H, Turner EE (2013) Medial habenula output circuit mediated by a5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus. J Neurosci 33:18022–18035

  39. Hwang E-K, Chung J-M (2014) 5HT1B receptor-mediated pre-synaptic depression of excitatory inputs to the rat lateral habenula. Neuropharmacology 81:153–165

  40. Ignatov A, Hermans-Borgmeyer I, Schaller HC (2004) Cloning and characterization of a novel G-protein-coupled receptor with homology to galanin receptors. Neuropharmacology 46:1114–1120

  41. Isberg V, Andersen KB, Bisig C, Dietz GPH, Bräuner-Osborne H, Gloriam DE (2014) Computer-aided discovery of aromatic l-α-amino acids as agonists of the orphan G protein-coupled receptor GPR139. J Chem Inf Model 54:1553–1557

  42. Ji H, Shepard PD (2007) Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA-A receptor-mediated mechanism. J Neurosci 27:6923–6930

  43. Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database bar049:1–3

  44. Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217:109–112

  45. Kobayashi Y, Sano Y, Vannoni E, Goto H, Suzuki H, Oba A, Kawasaki H, Kanba S, Lipp H-P, Murphy NP, Wolfer DP, Itohara S (2013) Genetic dissection of medial habenula –interpeduncular nucleus pathway function in mice. Front Behav Neursci 7:1–20

  46. Kowski AB, Geisler S, Krauss M, Veh RW (2008) Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat. J Comp Neurol 507:1465–1478

  47. Kowski AB, Veh RW, Weiss T (2009) Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 161:1154–1165

  48. Kringelbach ML, Berridge KC (2010) The neuroscience of happiness and pleasure. Soc Res N Y 77:659–678

  49. Kumar U (2012) Immunohistochemical distribution of somatostatin and somatostatin receptor subtypes (SSTR1–5) in hypothalamus of ApoD knockout mice brain. J Mol Neurosci 48:684–695

  50. Lateef DM, Abreu-Vieira G, Xiao C, Reitman ML (2014) Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3. Am J Physiol Endocrinol Metab 306:E681–E687

  51. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

  52. Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H, Barrera JG, Wilson H, Opland DM, Faouzi M, Gong Y, Jones JC, Rhodes CJ, Chua S Jr, Diano S, Horvath TL, Seeley RJ, Becker JB, Münzberg H, Myers MG Jr (2011) Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab 14:313–323

  53. Lv S-Y, Yang Y-J, Chen Q (2013) Regulation of feeding behavior, gestroinntestinal function and fluid homestasis by apelin. Peptides 44:87–92

  54. Madai VI, Poller WC, Peters D, Berger J, Paliege K, Bernard R, Veh RW, Laube G (2012) Synaptic localisation of agmatinase in rat cerebral cortex revealed by virtual pre-embedding. Amino Acids 43:1399–1403

  55. Matsuda K, Azuma M, Maruyama K, Shioda S (2013) Neuroendocrine control of feeding behavior and psychomotor activity by pituitary adenylate cyclase-activating polypeptide (PACAP) in vertebrates. Obes Res Clin Pract 7:e1–e7

  56. Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115

  57. Meye FJ, Adan RAH (2014) Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci 35:31–40

  58. Molnár G, Faragó N, Kocsis AK, Rózsa M, Lovas S, Boldog E, Báldi R, Csajbók E, Gardi J, Puskás LG, Tamás G (2014) GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J Neurosci 34:1133–1137

  59. Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and Zinc(II)-induced activity. PLoS One 8(e53347):1–9

  60. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an insitu hybridization study. J Comp Neurol 335(2):252–266

  61. Olah S, Füle M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

  62. Omelchenko N, Bell R, Sesack SR (2009) Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur J Neurosci 30:1239–1250

  63. Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

  64. Opland D, Sutton A, Woodworth H, Brown J, Bugescu R, Garcia A, Christensen L, Rhodes C, Myers M Jr, Leinninger G (2013) Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol Metab 2:423–434

  65. Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6:23–38

  66. Patel N, Itakura T, Gonzalez JM Jr, Schwartz SG, Fini ME (2013) GPR158, an orphan member of G protein-coupled receptor family C: glucocorticoid-stimulated expression and novel nuclear role. PLoS One 8:1–16

  67. Petralia RS, Wang Y-X, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3 show unique postsynaptic, presynaptic, and glial localizations. Neuroscience 71:949–976

  68. Poller WC, Madaia VI, Bernard R, Laube G, Veh RW (2013) A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat. Brain Res 1507:45–60

  69. Radulovic J, Tronson NC (2012) Preso, mGluR5 and the machinery of pain. Nat Neurosci 15:805–807

  70. Reichelt AC, Westbrook RF, Morris MJ (2015) Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br J Pharmacol Epub ahead of print

  71. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2011) Habenula ‘‘Cholinergic’’ neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452

  72. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:1–13

  73. Rouse ST, Thomas TM, Levey AI (1997) Muscarinic acetylcholine receptor subtype, m2: diverse functional implications of differential synaptic localization. Life Sci 60:1031–1038

  74. Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI (2000) Localization of M2 muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett 284:182–186

  75. Rucinski M, Malendowicz LK (2009) Precerebellin-related genes and precerebellin 1 peptide in endocrine glands of the rat: pattern of their expression. Int J Mol Med 23:113–119

  76. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

  77. Scott WR, Gelegen C, Chandarana K, Karra E, Yousseif A, Amouyal C, Choudhury AI, Andreelli F, Withers DJ, Batterham RL (2013) Differential Pre-mRNA splicing regulates Nnat isoforms in the hypothalamus after gastric bypass surgery in mice. PLoS One 8(3):e59407

  78. Segal JP, Stallings NR, Lee CE, Zhao L, Socci N, Viale A, Harris TM, Soares MB, Childs G, Elmquist JK, Parker KL, Friedman JM (2005) Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. J Neurosci 25:4181–4188

  79. Sego C, Goncalves L, Lima L, Furigo IC, Donato J Jr, Metzger M (2014) Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 522:1454–1484

  80. Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R (2012) Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74:475–481

  81. Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, Borsook D (2012) Mapping pain activation and connectivity of the human habenula. J Neurophysiol 107:2633–2648

  82. Shih P-Y, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, Drenan RM (2014) Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. J Neurosci 34:9789–9802

  83. Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372:395–414

  84. Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci USA 74:2167–2171

  85. Somogyi P, Takagi H (1982) A note on the use of picric acid-paraformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience 7:1779–1783

  86. Sutton KA, Jungnickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274:426–435

  87. Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, Nabika T, Fujioka A, Ohnaka K, Asano H, Yamori Y, Yamaguchi S, Kobayashi S, Takayanagi R, Ogihara T, Kato N (2010) Blood pressure and hypertension are associated with 7 Loci in the Japanese population. Circulation 121:2302–2309

  88. Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106:481–503

  89. Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

  90. Tatemoto K, Lundberg JM, Jörnval H, Mutt V (1985) Neuropeptide K: isolation, structure, and biological acitivities of a novel brain tachykinin. Biochem Biophys Res Commun 128:947–953

  91. Tortora GJ (2005) Principles of human anatomy. Wiley, New York

  92. Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314

  93. Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

  94. Vrang N, Meyre D, Froguel P, Jelsing J, Tang-Christensen M, Vatin V, Mikkelsen JD, Thirstrup K, Larsen LK, Cullberg KB, Fahrenkrug J, Jacobson P, Sjöström L, Carlsson LM, Liu Y, Liu X, Deng HW, Larsen PJ (2010) The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. Obesity 18:1289–1296

  95. Wagner F, Stroh T, Veh RW (2014a) Correlating habenular subnuclei in rat and mouse by using topographic, morphological, and cytochemical criteria. J Comp Neurol 522:2650–2662

  96. Wagner F, French L, Veh RW (2014b) Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries. Brain Struct Funct Epub ahead of print

  97. Wang S, Chen J-Z, Zhang Z, Huang Q, Gu S, Ying K, Xie Y, Mao Y (2002) Cloning, characterization, and expression of calcyphosine 2, a novel human gene encoding an EF-Hand Ca2-binding protein. Biochem Biophys Res Commun 291:414–420

  98. Wang DG, Gong N, Luo B, Xu TL (2006) Absence of GABA type A signaling in adult medial habenular neurons. Neuroscience 141:133–141

  99. Wang C, Wang H, Zhang Y, Tang Z, Li K, Liu B (2014) Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol Ecol Resour Epub ahead of print

  100. Weiss T, Veh RW (2011) Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 172:74–93

  101. Wickens AP (1987) Functional involvement of GABA agents in the habenular nuclei. Med Sci Res 15:35–36

  102. Wisden W, Parker EM, Mahle CD, Grisel DA, Nowak HP, Yocca FD, Felder CC, Seeburg PH, Voigt MM (1993) Cloning and characterization of the rat 5HT(5B) receptor: evidence that the 5-HT(5B) receptor couples to a G-Protein in mammalian cell membranes. FEBS Lett 333:25–31

  103. Wise R (2004) Dopamine, learning and motivation. Nat Rev 5:1–12

  104. Zimmer DB, Chaplin J, Baldwin A, Rast M (2005) S100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol 5:201–214

  105. Zirlinger M, Anderson D (2003) Molecular dissection of the amygdala and its relevance to autism. Gene Brain Behav 2:282–294

Download references


The authors gratefully thank Ina Wolter and Heike Heilmann for excellent technical assistance and Dr. Torsten Weiss for the cold-perfusion of rats. We especially are indebted to Annett Kaphahn for administrative help and expert advices in the use of image processing software. The financial support of the FAZIT foundation to F. W. is gratefully acknowledged.

Author information

Correspondence to Rüdiger W. Veh.

Ethics declarations

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Conflict of interest

F.W. received financial support of the FAZIT foundation. All authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, F., Bernard, R., Derst, C. et al. Microarray analysis of transcripts with elevated expressions in the rat medial or lateral habenula suggest fast GABAergic excitation in the medial habenula and habenular involvement in the regulation of feeding and energy balance. Brain Struct Funct 221, 4663–4689 (2016) doi:10.1007/s00429-016-1195-z

Download citation


  • KCC2
  • Neuropeptides
  • Lateral habenular complex (LHb)
  • Medial habenular complex (MHb)
  • Monaminergic systems
  • Non-reward system