Brain Structure and Function

, Volume 221, Issue 7, pp 3803–3823 | Cite as

Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord

  • Ming-Dong Zhang
  • Swapnali Barde
  • Edit Szodorai
  • Anna Josephson
  • Nicholas Mitsios
  • Masahiko Watanabe
  • Johannes Attems
  • Gert Lubec
  • Gábor G. Kovács
  • Mathias Uhlén
  • Jan Mulder
  • Tibor Harkany
  • Tomas Hökfelt
Original Article


Neuronal calcium-binding protein 1 and -2 (NECAB1/2) localize to multiple excitatory neuron populations in the mouse spinal cord. Here, we analyzed rat and human spinal cord, combining in situ hybridization and immunohistochemistry, complementing newly collated data on mouse spinal cord for direct comparisons. Necab1/2 mRNA transcripts showed complementary distribution in rodent’s spinal cord. Multiple-labeling fluorescence histochemistry with neuronal phenotypic markers localized NECAB1 to a dense fiber plexus in the dorsal horn, to neurons mainly in superficial layers and to commissural interneurons in both rodent species. NECAB1-positive (+) motor neurons were only found in mice. NECAB1 distribution in the human spinal cord was similar with the addition of NECAB1-like immunoreactivity surrounding myelinated axons. NECAB2 was mainly present in excitatory synaptic boutons in the dorsal horn of all three species, and often in calbindin-D28k+ neuronal somata. Rodent ependymal cells expressed calbindin-D28k. In humans, they instead were NECAB2+ and/or calretinin+. Our results reveal that the association of NECAB2 to excitatory neuronal circuits in the spinal cord is evolutionarily conserved across the mammalian species investigated so far. In contrast, NECAB1 expression is more heterogeneous. Thus, our study suggests that the phenotypic segregation of NECAB1 and -2 to respective excitatory and inhibitory spinal systems can underpin functional modalities in determining the fidelity of synaptic neurotransmission and neuronal responsiveness, and might bear translational relevance to humans.


Calbindin-D28k Ependymal cell PKCγ SST2A VGLUT1 VGLUT2 



Support for this study was provided by the Swedish Medical Research Council (T.Hö., T.Ha.), Karolinska Institutet, partial financing of graduate student funds (M.-D.Z., T.Ha., and T.Hö.); funding from the Karolinska Institutet (T.Hö., T.Ha.), the Novo Nordisk Foundation (T.Ha. and T.Hö.), the Swedish Brain Foundation (T.Ha. and T.Hö.), the Augusta and Petrus Hedlund Foundation (T.Ha. and T.Hö.) and the European Commission’s PAINCAGE 7th Framework Programme (T.Ha. and T.Hö.). Laser-scanning microscopy was made available by the Center for Live Imaging of Cells (CLICK) at Karolinska Institutet, an imaging core facility supported by the Knut and Alice Wallenberg Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

429_2016_1191_MOESM1_ESM.tif (2.7 mb)
Supplementary Figure S1 Distribution of NECAB1-LI in rat and human spinal dorsal horn after incubation with monoclonal or polyclonal antibodies. The polyclonal (a, c) and monoclonal (b, d) NECAB1 antibody show a similar distribution pattern in rat (a, b) and human (c, d) dorsal horn. Scale bars: 200 μm in a, b, 200 μm in c, d (TIFF 2775 kb)
429_2016_1191_MOESM2_ESM.tif (354 kb)
Supplementary Figure S2 Representative MS/MS fragmentation spectrum of a unique peptide identified from NECAB2 illustrating b and y fragment ions of GGTAVILDIFR sequence (Charge: +2 Monoisotopic m/z: 581.450 Da (±0.230 Da) MH+(mono): 1161.663 Da, RT: 79.84 min) (TIFF 354 kb)
429_2016_1191_MOESM3_ESM.tif (961 kb)
Supplementary Figure S3 Expression of PKCγ in mouse, rat and human spinal cord. a-c Low magnification pictures show overview of PKCγ expression in mouse, rat and human lumbar spinal cord, respectively. The heavily labeled area in lamina IIi by PKCγ is outlined with magenta dashed lines. The descending tracts of PKCγ in rodents’ dorsal funiculus and human’s lateral spinal cord are also labeled by magenta dashed lines. d, e The PKCγ expression pattern is highlighted in the spinal atlas from rodents and human. dCST: descending cortical spinal tract, LCST: lateral cortical spinal tract, Cc: central canal. Scale bars: 500 μm (TIFF 960 kb)
429_2016_1191_MOESM4_ESM.tif (2.1 mb)
Supplementary Figure S4 Expression of VGLUT1 and VGLUT2 in mouse, rat and human spinal cord. a-c Low magnification pictures show overview of VGLUT1 expression in mouse, rat and human lumbar spinal cord, respectively. d-f Low magnification pictures show overview of VGLUT2 expression in mouse, rat and human lumbar spinal cord, respectively. Scale bars: 200 μm in a, b, d, e 1 mm in c, f (TIFF 2156 kb)
429_2016_1191_MOESM5_ESM.tif (2.7 mb)
Supplementary Figure S5 Expression of calretinin and calbindin-D28k in mouse, rat and human spinal cord. a-c Low magnification pictures show overview of calretinin expression in mouse, rat and human lumbar spinal cord, respectively. d-f Low magnification pictures show overview of calbindin-D28k expression in mouse, rat and human lumbar spinal cord, respectively. Central canal is outlined by dashed line. Cc: central canal. Scale bars: 200 μm in a, b, d, e 1 mm in c, f (TIFF 2742 kb)
429_2016_1191_MOESM6_ESM.docx (44 kb)
Supplementary material 6 (DOCX 44 kb)
429_2016_1191_MOESM7_ESM.docx (66 kb)
Supplementary material 7 (DOCX 65 kb)


  1. Alfaro-Cervello C, Cebrian-Silla A, Soriano-Navarro M, Garcia-Tarraga P, Matias-Guiu J, Gomez-Pinedo U, Molina Aguilar P, Alvarez-Buylla A, Luquin MR, Garcia-Verdugo JM (2014) The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol 522(8):1800–1817. doi: 10.1002/cne.23501 PubMedCrossRefGoogle Scholar
  2. Andressen C, Blumcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271(2):181–208PubMedCrossRefGoogle Scholar
  3. Antal M, Polgar E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi P (1991) Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-d-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 314(1):114–124. doi: 10.1002/cne.903140111 PubMedCrossRefGoogle Scholar
  4. Averill S, Robson LG, Jeromin A, Priestley JV (2004) Neuronal calcium sensor-1 is expressed by dorsal root ganglion cells, is axonally transported to central and peripheral terminals, and is concentrated at nodes. Neuroscience 123(2):419–427PubMedCrossRefGoogle Scholar
  5. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7(4):470–482. doi: 10.1016/j.stem.2010.07.014 PubMedCrossRefGoogle Scholar
  6. Bernier G, Vukovich W, Neidhardt L, Herrmann BG, Gruss P (2001) Isolation and characterization of a downstream target of Pax6 in the mammalian retinal primordium. Development 128(20):3987–3994PubMedGoogle Scholar
  7. Birinyi A, Viszokay K, Weber I, Kiehn O, Antal M (2003) Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J Comp Neurol 461(4):429–440. doi: 10.1002/cne.10696 PubMedCrossRefGoogle Scholar
  8. Borgius L, Nishimaru H, Caldeira V, Kunugise Y, Low P, Reig R, Itohara S, Iwasato T, Kiehn O (2014) Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits. J Neurosci 34(11):3841–3853. doi: 10.1523/JNEUROSCI.4992-13.2014 PubMedCrossRefGoogle Scholar
  9. Borowska J, Jones CT, Zhang H, Blacklaws J, Goulding M, Zhang Y (2013) Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J Neurosci 33(47):18553–18565. doi: 10.1523/JNEUROSCI.2005-13.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Brumovsky P, Watanabe M, Hokfelt T (2007) Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury. Neuroscience 147(2):469–490. doi: 10.1016/J.Neuroscience.02.068 PubMedCrossRefGoogle Scholar
  11. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8(3):182–193. doi: 10.1038/nrn2093 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carlton SM, McNeill DL, Chung K, Coggeshall RE (1988) Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn. J Comp Neurol 276(4):527–536. doi: 10.1002/cne.902760407 PubMedCrossRefGoogle Scholar
  13. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475PubMedCrossRefGoogle Scholar
  14. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108(1):31–43PubMedCrossRefGoogle Scholar
  15. Coons AH (1958) Fluorescent antibody methods. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 399–422Google Scholar
  16. Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16(3):215–226PubMedCrossRefGoogle Scholar
  17. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27(2):98–103. doi: 10.1016/j.tins.2003.11.005 PubMedCrossRefGoogle Scholar
  18. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347:AID-HIPO1>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  19. Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B, Florensa-Vila J, Ferrer I, Grassner L, Molina-Holgado E (2015) The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features. Brain 138(Pt 6):1583–1597. doi: 10.1093/brain/awv089 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ghafari M, Whittle N, Miklosi AG, Kotlowski C, Schmuckermair C, Berger J, Bennett KL, Singewald N, Lubec G (2015) Dietary magnesium restriction reduces amygdala-hypothalamic GluN1 receptor complex levels in mice. Brain Struct Funct 220(4):2209–2221. doi: 10.1007/s00429-014-0779-8 PubMedCrossRefGoogle Scholar
  21. Girard F, Venail J, Schwaller B, Celio MR (2015) The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain. Neuroscience 294:116–155. doi: 10.1016/j.neuroscience.2015.02.018 PubMedCrossRefGoogle Scholar
  22. Haines DE (1987) Neuroanatomy: an atlas of structures, sections, and systems, 2nd edn. Urban and Schwarzenberg, BaltimoreGoogle Scholar
  23. Hajszan T, Alreja M, Leranth C (2004) Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells. Hippocampus 14(4):499–509. doi: 10.1002/hipo.10195 PubMedCrossRefGoogle Scholar
  24. Henry AM, Hohmann JG (2012) High-resolution gene expression atlases for adult and developing mouse brain and spinal cord. Mamm Genome 23(9–10):539–549. doi: 10.1007/s00335-012-9406-2 PubMedCrossRefGoogle Scholar
  25. Hughes DI, Scott DT, Todd AJ, Riddell JS (2003) Lack of evidence for sprouting of Abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J Neurosci 23(29):9491–9499PubMedGoogle Scholar
  26. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34PubMedCrossRefGoogle Scholar
  27. Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444(1):39–62PubMedCrossRefGoogle Scholar
  28. Kasantikul V, Netsky MG, James AE Jr (1979) Relation of age and cerebral ventricle size to central canal in man. Morphological analysis. J Neurosurg 51(1):85–93. doi: 10.3171/jns.1979.51.1.0085 PubMedCrossRefGoogle Scholar
  29. Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21(1):100–109. doi: 10.1016/j.conb.2010.09.004 PubMedCrossRefGoogle Scholar
  30. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57. doi: 10.1126/science.1149381 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lagerstrom MC, Rogoz K, Abrahamsen B, Persson E, Reinius B, Nordenankar K, Olund C, Smith C, Mendez JA, Chen ZF, Wood JN, Wallen-Mackenzie A, Kullander K (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68(3):529–542. doi: 10.1016/j.neuron.2010.09.016 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F (2004) Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 468(3):380–394. doi: 10.1002/cne.10988 PubMedCrossRefGoogle Scholar
  33. Lang B, Liu HL, Liu R, Feng GD, Jiao XY, Ju G (2004) Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 128(4):775–783. doi: 10.1016/j.neuroscience.2004.06.033 PubMedCrossRefGoogle Scholar
  34. Le Maitre E, Barde SS, Palkovits M, Diaz-Heijtz R, Hokfelt TG (2013) Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc Natl Acad Sci USA 110(6):E536–E545. doi: 10.1073/pnas.1221378110 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. doi: 10.1038/nature05453 PubMedCrossRefGoogle Scholar
  36. Li JL, Fujiyama F, Kaneko T, Mizuno N (2003) Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol 457(3):236–249. doi: 10.1002/cne.10556 PubMedCrossRefGoogle Scholar
  37. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X (2015) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. doi: 10.1038/cr.2015.149 Google Scholar
  38. Liu Y, Abdel Samad O, Zhang L, Duan B, Tong Q, Lopes C, Ji RR, Lowell BB, Ma Q (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68(3):543–556. doi: 10.1016/j.neuron.2010.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ljungdahl A, Hokfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat—I. Cell bodies and nerve terminals. Neuroscience 3(10):861–943PubMedCrossRefGoogle Scholar
  40. Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, Hokfelt T, Gebhart GF, Brumovsky PR (2013) Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice—effects of peripheral axotomy or hindpaw inflammation. Neuroscience 248C:95–111. doi: 10.1016/j.neuroscience.2013.05.044 CrossRefGoogle Scholar
  41. Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278(5336):279–283PubMedCrossRefGoogle Scholar
  42. Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80(4):716–722. doi: 10.3171/jns.1994.80.4.0716 PubMedCrossRefGoogle Scholar
  43. Moechars D, Weston MC, Leo S, Callaerts-Vegh Z, Goris I, Daneels G, Buist A, Cik M, van der Spek P, Kass S, Meert T, D’Hooge R, Rosenmund C, Hampson RM (2006) Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 26(46):12055–12066. doi: 10.1523/JNEUROSCI.2556-06.2006 PubMedCrossRefGoogle Scholar
  44. Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230(1):133–141. doi: 10.1002/cne.902300112 PubMedCrossRefGoogle Scholar
  45. Mori M, Kose A, Tsujino T, Tanaka C (1990) Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J Comp Neurol 299(2):167–177. doi: 10.1002/cne.902990204 PubMedCrossRefGoogle Scholar
  46. Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103(6 Pt 1):2511–2527PubMedCrossRefGoogle Scholar
  47. Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B (2003) Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50(2):117–129. doi: 10.1002/syn.10249 PubMedCrossRefGoogle Scholar
  48. Polgar E, Fowler JH, McGill MM, Todd AJ (1999) The types of neuron which contain protein kinase C gamma in rat spinal cord. Brain Res 833(1):71–80PubMedCrossRefGoogle Scholar
  49. Polgar E, Durrieux C, Hughes DI, Todd AJ (2013) A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One 8(10):e78309. doi: 10.1371/journal.pone.0078309 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5(3):535–541PubMedPubMedCentralGoogle Scholar
  51. Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Brain Res Rev 19(2):163–179PubMedCrossRefGoogle Scholar
  52. Sabelstrom H, Stenudd M, Reu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Goritz C, Frisen J (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342(6158):637–640. doi: 10.1126/science.1242576 PubMedCrossRefGoogle Scholar
  53. Sardella TC, Polgar E, Garzillo F, Furuta T, Kaneko T, Watanabe M, Todd AJ (2011) Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain 7:76. doi: 10.1186/1744-8069-7-76 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sase S, Sase A, Sialana FJ Jr, Groger M, Bennett KL, Stork O, Lubec G, Li L (2015) Individual phases of contextual fear conditioning differentially modulate dorsal and ventral hippocampal GluA1-3, GluN1-containing receptor complexes and subunits. Hippocampus. doi: 10.1002/hipo.22470 PubMedGoogle Scholar
  55. Scherrer G, Low SA, Wang X, Zhang J, Yamanaka H, Urban R, Solorzano C, Harper B, Hnasko TS, Edwards RH, Basbaum AI (2010) VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proc Natl Acad Sci USA 107(51):22296–22301. doi: 10.1073/pnas.1013413108 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2(11):a004051. doi: 10.1101/cshperspect.a004051 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Shi TJ, Xiang Q, Zhang MD, Tortoriello G, Hammarberg H, Mulder J, Fried K, Wagner L, Josephson A, Uhlen M, Harkany T, Hokfelt T (2012) Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human. Mol Pain 8:80. doi: 10.1186/1744-8069-8-80 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Shi TJ, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Gluck L, Deyev SM, Zvyagin AV, Schulz S, Hokfelt T (2014) Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 10(1):12. doi: 10.1186/1744-8069-10-12 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Stanic D, Brumovsky P, Fetissov S, Shuster S, Herzog H, Hokfelt T (2006) Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J Comp Neurol 499(3):357–390. doi: 10.1002/cne.21046 PubMedCrossRefGoogle Scholar
  60. Sugita S, Sudhof TC (2000) Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. Biochemistry 39(11):2940–2949PubMedCrossRefGoogle Scholar
  61. Sugita S, Ho A, Sudhof TC (2002) NECABs: a family of neuronal Ca(2+)-binding proteins with an unusual domain structure and a restricted expression pattern. Neuroscience 112(1):51–63PubMedCrossRefGoogle Scholar
  62. Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500(7460):85–88. doi: 10.1038/nature12286 PubMedCrossRefGoogle Scholar
  63. Todd AJ, Spike RC, Polgar E (1998a) A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 85(2):459–473PubMedCrossRefGoogle Scholar
  64. Todd AJ, Spike RC, Polgar E (1998b) A quantitative study of neurons which express NEUROKININ-1 or somatostatin sst(2a) receptor in rat spinal dorsal horn. Neuroscience 85(2):459–473. doi: 10.1016/S0306-4522(97)00669-6 PubMedCrossRefGoogle Scholar
  65. Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17(1):13–27PubMedCrossRefGoogle Scholar
  66. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18(1):145–153. doi: 10.1038/nn.3881 PubMedCrossRefGoogle Scholar
  67. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41(3):1017–1028PubMedCrossRefGoogle Scholar
  68. Wu H, Li D, Shan Y, Wan B, Hexige S, Guo J, Wu C, Yu L (2007) EFCBP1/NECAB1, a brain-specifically expressed gene with highest abundance in temporal lobe, encodes a protein containing EF-hand and antibiotic biosynthesis monooxygenase domains. DNA Seq 18(1):73–79. doi: 10.1080/10425170500511271 PubMedCrossRefGoogle Scholar
  69. Yasui K, Hashizume Y, Yoshida M, Kameyama T, Sobue G (1999) Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol 97(3):253–259PubMedCrossRefGoogle Scholar
  70. Zhang MD, Tortoriello G, Hsueh B, Tomer R, Ye L, Mitsios N, Borgius L, Grant G, Kiehn O, Watanabe M, Uhlen M, Mulder J, Deisseroth K, Harkany T, Hokfelt TG (2014) Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proc Natl Acad Sci USA 111(12):E1149–E1158. doi: 10.1073/pnas.1402318111 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Zimmermann B, Girard F, Meszar Z, Celio MR (2013) Expression of the calcium binding proteins Necab-1,-2 and -3 in the adult mouse hippocampus and dentate gyrus. Brain Res 1528:1–7. doi: 10.1016/j.brainres.2013.06.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming-Dong Zhang
    • 1
    • 2
  • Swapnali Barde
    • 1
  • Edit Szodorai
    • 3
    • 7
  • Anna Josephson
    • 1
  • Nicholas Mitsios
    • 4
  • Masahiko Watanabe
    • 5
  • Johannes Attems
    • 6
  • Gert Lubec
    • 7
  • Gábor G. Kovács
    • 8
  • Mathias Uhlén
    • 4
    • 9
  • Jan Mulder
    • 4
  • Tibor Harkany
    • 2
    • 3
  • Tomas Hökfelt
    • 1
  1. 1.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Division of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
  3. 3.Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
  4. 4.Science for Life Laboratory, Department of NeuroscienceKarolinska InstitutetStockholmSweden
  5. 5.Department of AnatomyHokkaido University School of MedicineSapporoJapan
  6. 6.Institute of Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
  7. 7.Department of Pharmaceutical ChemistryMedical University of ViennaViennaAustria
  8. 8.Institute of NeurologyMedical University of ViennaViennaAustria
  9. 9.Science for Life Laboratory, Albanova University CenterRoyal Institute of TechnologyStockholmSweden

Personalised recommendations