Brain Structure and Function

, Volume 221, Issue 9, pp 4733–4740 | Cite as

A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats

  • Fumino FujiyamaEmail author
  • Takashi Nakano
  • Wakoto Matsuda
  • Takahiro Furuta
  • Jun Udagawa
  • Takeshi Kaneko
Short Communication


The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called “prototypic” and “arkypallidal” neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.


Basal ganglia Single neuron tracing Globus pallidus Striatum Arkypallidal neuron Prototypic neuron 



We are deeply grateful to Prof. Paul Bolam for his sincere encouragement and critical reading of the manuscript. This study was supported by Grants-in-Aid from The Ministry of Education, Culture, Sports, Science, and Technology (MEXT) for Scientific Research (25282247, 15K12770); and for Scientific Researches on Innovative Areas “Prediction and Decision Making” (26120725) and “Adaptive Circuit Shift” (26112001).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, Suri S, Avery SV, Larvin JT, Garas FN, Garas SN, Vinciati F, Morin S, Bezard E, Baufreton J, Magill PJ (2015) Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci 35:6667–6688CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baufreton J, Kirkham E, Atherton JF, Menard A, Magill PJ, Bolam JP, Bevan MD (2009) Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. J Neurophysiol 102:532–545CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bevan MD, Booth PA, Eaton SA, Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18:9438–9452PubMedGoogle Scholar
  4. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531CrossRefPubMedGoogle Scholar
  5. Bolam JP, Hanley JJ, Booth PAC, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dodson PD, Larvin JT, Duffell JM, Garas FN, Doig NM, Kessaris N, Duguid IC, Bogacz R, Butt SJB, Magill PJ (2015) Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron 86:501–513CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flandin P, Kimura S, Rubenstein JLR (2010) The Progenitor zone of the ventral medial ganglionic eminence requires Nk2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 30:2812–2823CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668–677CrossRefPubMedGoogle Scholar
  9. Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49:1497–1508CrossRefPubMedGoogle Scholar
  10. Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236:454–476CrossRefPubMedGoogle Scholar
  11. Gittis AH, Berke JD, Bevan MD, Chan CS, Mallet N, Morrow MM, Schmidt R (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178–15183CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hontanilla B, Parent A, Giménez-Amaya JM (1997) Parvalbumin and calbindin D-28k in the entopeduncular nucleus, subthalamic nucleus, and substantia nigra of the rat as revealed by double-immunohistochemical methods. Synapse 25:359–367CrossRefPubMedGoogle Scholar
  13. Hoover BR, Marshall JF (2002) Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 111:111–125CrossRefPubMedGoogle Scholar
  14. Kaneko T, Caria MA, Asanuma H (1994) Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol 345:172–184CrossRefPubMedGoogle Scholar
  15. Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133CrossRefPubMedGoogle Scholar
  16. Kita H, Kita T (2001) Number, origins, and chemical types of rat pallidostriatal projection neurons. J Comp Neurol 437:438–448CrossRefPubMedGoogle Scholar
  17. Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308–319CrossRefPubMedGoogle Scholar
  18. Koshimizu Y, Fujiyama F, Nakamura KC, Furuta T, Kaneko T (2013) Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. J Comp Neurol 521:2125–2146CrossRefPubMedGoogle Scholar
  19. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19:2065–2077CrossRefPubMedGoogle Scholar
  20. Mallet N, Micklem BR, Henny P, Brown MT, Williams C, Bolam JP, Nakamura KC, Magill PJ (2012) Dichotomous organization of the external globus pallidus. Neuron 74:1075–1086CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mastro KJ, Bouchard RS, Holt HAK, Gittis AH (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34:2087–2099CrossRefPubMedPubMedCentralGoogle Scholar
  22. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29:444–453CrossRefPubMedGoogle Scholar
  23. Nambu A, Linás R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72:1127–1139PubMedGoogle Scholar
  24. Nambu A, Linás R (1997) Morphology of globus pallidus neurons; its correlation with electrophysiology in guinea pig brain slices. J Comp Neurol 377:85–94CrossRefPubMedGoogle Scholar
  25. Ohno S, Kuramoto E, Furuta T, Hioki H, Tanaka YR, Fujiyama F, Sonomura T, Uemura M, Sugiyama K, Kaneko T (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857CrossRefPubMedGoogle Scholar
  26. Prensa I, Parent A (2001) The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21:7247–7260PubMedGoogle Scholar
  27. Rajakumar N, Rushlow W, Naus CC, Elisevich K, Flumerfelt BA (1994) Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins. J Comp Neurol 346:337–348CrossRefPubMedGoogle Scholar
  28. Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352–6362CrossRefPubMedGoogle Scholar
  29. Sato F, Lavallée P, Lévesque M, Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17–31CrossRefPubMedGoogle Scholar
  30. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387CrossRefPubMedGoogle Scholar
  31. Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21:1081–1091CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fumino Fujiyama
    • 1
    • 2
    Email author
  • Takashi Nakano
    • 3
  • Wakoto Matsuda
    • 4
  • Takahiro Furuta
    • 4
  • Jun Udagawa
    • 3
  • Takeshi Kaneko
    • 4
  1. 1.Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
  2. 2.CRESTJSTSaitamaJapan
  3. 3.Department of AnatomyShiga University of Medical ScienceShigaJapan
  4. 4.Department of Morphological Brain Science, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations