Brain Structure and Function

, Volume 221, Issue 8, pp 4269–4279 | Cite as

Left medial orbitofrontal cortex volume correlates with skydive-elicited euphoric experience

  • Joshua M. Carlson
  • Jiook Cha
  • Tomer Fekete
  • Tsafrir Greenberg
  • Lilianne R. Mujica-Parodi
Short Communication

Abstract

The medial orbitofrontal cortex has been linked to the experience of positive affect. Greater medial orbitofrontal cortex volume is associated with greater expression of positive affect and reduced medial orbital frontal cortex volume is associated with blunted positive affect. However, little is known about the experience of euphoria, or extreme joy, and how this state may relate to variability in medial orbitofrontal cortex structure. To test the hypothesis that variability in euphoric experience correlates with the volume of the medial orbitofrontal cortex, we measured individuals’ (N = 31) level of self-reported euphoria in response to a highly anticipated first time skydive and measured orbitofrontal cortical volumes with structural magnetic resonance imaging. Skydiving elicited a large increase in self-reported euphoria. Participants’ euphoric experience was predicted by the volume of their left medial orbitofrontal cortex such that, the greater the volume, the greater the euphoria. Further analyses indicated that the left medial orbitofrontal cortex and amygdalo-hippocampal complex independently explain variability in euphoric experience and that medial orbitofrontal cortex volume, in conjunction with other structures within the mOFC-centered corticolimbic circuit, can be used to predict individuals’ euphoric experience.

Keywords

Skydive Euphoria Medial prefrontal cortex Reward Hedonia 

Supplementary material

429_2015_1139_MOESM1_ESM.docx (645 kb)
Supplementary material 1 (DOCX 645 kb)

References

  1. Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433(7021):68–72PubMedCrossRefGoogle Scholar
  2. Baare WF, Hulshoff Pol HE, Hijman R, Mali WP, Viergever MA, Kahn RS (1999) Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol Psychiatry 45(12):1597–1605PubMedCrossRefGoogle Scholar
  3. Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76:412–427. doi:10.1016/j.neuroimage.2013.02.063 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513. doi:10.1016/S0166-2236(03)00233-9 PubMedCrossRefGoogle Scholar
  5. Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. P Natl Acad Sci USA 98(20):11818–11823CrossRefGoogle Scholar
  6. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611PubMedCrossRefGoogle Scholar
  7. Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JD (2002) Amygdala response to happy faces as a function of extraversion. Science 296(5576):2191. doi:10.1126/science.1068749296/5576/2191PubMedCrossRefGoogle Scholar
  8. Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G (2011) Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study. Neuroimage 57(4):1608–1616. doi:10.1016/J.Neuroimage.05.037 PubMedCrossRefGoogle Scholar
  9. Carlson JM, Dikecligil GN, Greenberg T, Mujica-Parodi LR (2012) Trait reappraisal is associated with resilience to acute psychological stress. J Res Personal 46(5):609–613CrossRefGoogle Scholar
  10. Carlson JM, Cha J, Harmon-Jones E, Mujica-Parodi LR, Hajcak G (2014) Influence of the BDNF genotype on amygdalo-prefrontal white matter microstructure is linked to nonconscious attention bias to threat. Cereb Cortex 24(9):2249–2257. doi:10.1093/cercor/bht089 PubMedCrossRefGoogle Scholar
  11. Carlson JM, Depetro E, Maxwell J, Harmon-Jones E, Hajcak G (2015) Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample. Psychiatry Res 233(2):285–288. doi:10.1016/j.pscychresns.2015.06.005 PubMedCrossRefGoogle Scholar
  12. Cha J, Greenberg T, Carlson JM, DeDora DJ, Hajcak G, Mujica-Parodi LR (2014) Circuit-wide structural and functional measures predict ventromedial prefrontal fear generalization: implications for generalized anxiety disorder. J Neurosci 34(11):4043–4053. doi:10.1523/JNEUROSCI.3372-13.2014 PubMedCrossRefGoogle Scholar
  13. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27CrossRefGoogle Scholar
  14. Chatterton RT Jr, Vogelsong KM, Lu YC, Hudgens GA (1997) Hormonal responses to psychological stress in men preparing for skydiving. J Clin Endocrinol Metab 82(8):2503–2509PubMedGoogle Scholar
  15. Coan JA, Allen JJ (2003) Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology 40(1):106–114PubMedCrossRefGoogle Scholar
  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194. doi:10.1006/nimg.1998.0395 PubMedCrossRefGoogle Scholar
  17. Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cognit 20(1):125–151CrossRefGoogle Scholar
  18. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375PubMedCrossRefGoogle Scholar
  19. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34PubMedCrossRefGoogle Scholar
  20. DeDora DJ, Carlson JM, Mujica-Parodi LR (2011) Acute stress eliminates female advantage in detection of ambiguous negative affect. Evol Psychol 9(4):532–542 (epjournal-1665 [pii])PubMedCrossRefGoogle Scholar
  21. Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77. doi:10.1016/j.tins.2011.11.005 PubMedCrossRefGoogle Scholar
  22. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi:10.1016/j.neuroimage.2006.01.021 PubMedCrossRefGoogle Scholar
  23. Dikecligil GN, Mujica-Parodi LR (2010) Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol Psychiat 67(12):1185–1190. doi:10.1016/J.Biopsych.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96PubMedCrossRefGoogle Scholar
  25. Fagen R (1974) Selective and evolutionary aspects of animal play. Am Nat 108(964):850–858CrossRefGoogle Scholar
  26. Fekete T, Wilf M, Rubin D, Edelman S, Malach R, Mujica-Parodi LR (2013) Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PLoS One 8(5):e62867. doi:10.1371/journal.pone.0062867 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055. doi:10.1073/pnas.200033797 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207. doi:10.1006/nimg.1998.0396 PubMedCrossRefGoogle Scholar
  29. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355PubMedCrossRefGoogle Scholar
  30. Foti D, Carlson JM, Sauder CL, Proudfit GH (2014) Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage 101:50–58. doi:10.1016/j.neuroimage.2014.06.058 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333PubMedGoogle Scholar
  32. Gilbert DG, Carlson JM, Riise H, Rabinovich NE, Sugai C, Froeliger B (2008) Effects of nicotine and depressive traits on affective priming of lateralized emotional word identification. Exp Clin Psychopharmacol 16(4):293–300. doi:10.1037/a0012871 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR (2013a) Neural reactivity tracks fear generalization gradients. Biol Psychol 92(1):2–8. doi:10.1016/j.biopsycho.2011.12.007 PubMedCrossRefGoogle Scholar
  34. Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR (2013b) Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress Anxiety 30(3):242–250. doi:10.1002/da.22016 PubMedCrossRefGoogle Scholar
  35. Greenberg T, Carlson JM, Rubin D, Cha J, Mujica-Parodi L (2014) Anticipation of high arousal aversive and positive movie clips engages common and distinct neural substrates. Soc Cognit Affect Neurosci. doi:10.1093/scan/nsu091 Google Scholar
  36. Greenberg T, Chase HW, Almeida JR, Stiffler R, Zevallos CR, Aslam HA, Deckersbach T, Weyandt S, Cooper C, Toups M, Carmody T, Kurian B, Peltier S, Adams P, McInnis MG, Oquendo MA, McGrath PJ, Fava M, Weissman M, Parsey R, Trivedi MH, Phillips ML (2015) Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: findings from the EMBARC study. Am J Psychiatry 172(9):881–891. doi:10.1176/appi.ajp.2015.14050594 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM (2013) Widespread reductions in gray matter volume in depression. NeuroImage Clin 3:332–339. doi:10.1016/j.nicl.2013.08.016 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768PubMedCrossRefGoogle Scholar
  39. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefGoogle Scholar
  40. Hamann S, Mao H (2002) Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport 13(1):15–19PubMedCrossRefGoogle Scholar
  41. Hamann SB, Ely TD, Hoffman JM, Kilts CD (2002) Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychol Sci 13(2):135–141PubMedCrossRefGoogle Scholar
  42. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1):180–194. doi:10.1016/j.neuroimage.2006.02.051 PubMedCrossRefGoogle Scholar
  43. Harmon-Jones E, Allen JJ (1998) Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Personal Soc Psychol 74(5):1310–1316CrossRefGoogle Scholar
  44. Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84(3):451–462. doi:10.1016/j.biopsycho.2009.08.010 PubMedCrossRefGoogle Scholar
  45. Harvey PO, Armony J, Malla A, Lepage M (2010) Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res 44(11):707–716. doi:10.1016/j.jpsychires.2009.12.008 PubMedCrossRefGoogle Scholar
  46. Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria verses new alternatives. Struct Equ Model 6:1–55CrossRefGoogle Scholar
  47. Ishai A (2007) Sex, beauty and the orbitofrontal cortex. Int J Psychophysiol 63(2):181–185. doi:10.1016/j.ijpsycho.2006.03.010 PubMedCrossRefGoogle Scholar
  48. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58(11):843–853. doi:10.1016/j.biopsych.2005.05.019 PubMedCrossRefGoogle Scholar
  49. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690. doi:10.1001/archgenpsychiatry.2011.60 PubMedCrossRefGoogle Scholar
  50. Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):159 (20015472 [pii])Google Scholar
  51. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12(17):3683–3687PubMedCrossRefGoogle Scholar
  52. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH (2008) Neural responses to monetary incentives in major depression. Biol Psychiatry 63(7):686–692. doi:10.1016/j.biopsych.2007.07.023 PubMedCrossRefGoogle Scholar
  53. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30(11):3719–3735. doi:10.1002/hbm.20801 PubMedCrossRefGoogle Scholar
  54. Kring AM, Barch DM (2014) The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs. Eur Neuropsychopharmacol 24(5):725–736. doi:10.1016/j.euroneuro.2013.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691–702. doi:10.1038/nrn1747 PubMedCrossRefGoogle Scholar
  56. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372. doi:10.1016/j.pneurobio.2004.03.006 PubMedCrossRefGoogle Scholar
  57. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13(10):1064–1071PubMedCrossRefGoogle Scholar
  58. LeDoux JE (1996) The emotional brain the mysterious underpinnings of emotional life. Weidenfeld and Nicholson, LondonGoogle Scholar
  59. Liao J, Yan H, Liu Q, Yan J, Zhang L, Jiang S, Zhang X, Dong Z, Yang W, Cai L, Guo H, Wang Y, Li Z, Tian L, Zhang D, Wang F (2015) Reduced paralimbic system gray matter volume in schizophrenia: correlations with clinical variables, symptomatology and cognitive function. J Psychiatr Res 65:80–86. doi:10.1016/j.jpsychires.2015.04.008 PubMedCrossRefGoogle Scholar
  60. Linhart H, Zucchini W (1986) Model selection. Wiley series in probability and mathematical statistics. Wiley, OxfordGoogle Scholar
  61. Lorenzetti V, Allen NB, Fornito A, Yucel M (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 117(1–2):1–17. doi:10.1016/j.jad.2008.11.021 PubMedCrossRefGoogle Scholar
  62. Marteau TM, Bekker H (1992) The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol 31(Pt 3):301–306PubMedCrossRefGoogle Scholar
  63. McGaugh JL (2002) Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25(9):456PubMedCrossRefGoogle Scholar
  64. Millan MJ, Fone K, Steckler T, Horan WP (2014) Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 24(5):645–692. doi:10.1016/j.euroneuro.2014.03.008 PubMedCrossRefGoogle Scholar
  65. Moore GJ, Cortese BM, Glitz DA, Zajac-Benitez C, Quiroz JA, Uhde TW, Drevets WC, Manji HK (2009) A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 70(5):699–705. doi:10.4088/JCP.07m03745 PubMedCrossRefGoogle Scholar
  66. Mujica-Parodi LR, Carlson JM, Cha J, Rubin D (2014) The fine line between ‘brave’ and ‘reckless’: amygdala reactivity and regulation predict recognition of risk. Neuroimage 103:1–9. doi:10.1016/j.neuroimage.2014.08.038 PubMedCrossRefGoogle Scholar
  67. Nitschke JB, Nelson EE, Rusch BD, Fox AS, Oakes TR, Davidson RJ (2003) Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage 21(2):583–592. doi:10.1016/J.Neuroimaging.10.005 CrossRefGoogle Scholar
  68. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4(1):95–102. doi:10.1038/82959 PubMedCrossRefGoogle Scholar
  69. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5):815–826 (S0896627302006037 [pii])PubMedCrossRefGoogle Scholar
  70. O’Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ (2003) Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41(2):147–155 (S0028393202001458 [pii])PubMedCrossRefGoogle Scholar
  71. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348. doi:10.1006/nimg.2002.1087 PubMedCrossRefGoogle Scholar
  72. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14(2):198–202. doi:10.1016/j.conb.2004.03.015 PubMedCrossRefGoogle Scholar
  73. Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2006) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. Ann N Y Acad Sci 911(1):369–391CrossRefGoogle Scholar
  74. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, Dougherty DD, Iosifescu DV, Rauch SL, Fava M (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166(6):702–710. doi:10.1176/appi.ajp.2008.08081201 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48(8):766–777PubMedCrossRefGoogle Scholar
  76. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61(4):1402–1418. doi:10.1016/j.neuroimage.2012.02.084 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rilling J, Gutman D, Zeh T, Pagnoni G, Berns G, Kilts C (2002) A neural basis for social cooperation. Neuron 35(2):395–405 (S0896627302007559 [pii])PubMedCrossRefGoogle Scholar
  78. Rosso IM, Makris N, Thermenos HW, Hodge SM, Brown A, Kennedy D, Caviness VS, Faraone SV, Tsuang MT, Seidman LJ (2010) Regional prefrontal cortex gray matter volumes in youth at familial risk for schizophrenia from the Harvard Adolescent High Risk Study. Schizophr Res 123(1):15–21. doi:10.1016/j.schres.2010.06.015 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cognit Sci 16(3):147–156. doi:10.1016/j.tics.2012.01.005 CrossRefGoogle Scholar
  80. Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, Gervais R (2000) Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci 20(20):7752–7759 (20/20/7752 [pii])PubMedGoogle Scholar
  81. Sackeim HA, Greenberg MS, Weiman AL, Gur RC, Hungerbuhler JP, Geschwind N (1982) Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Arch Neurol 39(4):210–218PubMedCrossRefGoogle Scholar
  82. Spielberger CD, Gorsuch RL, Lushene RE (1970) Manual for the state-trait axiety inventory (self- evaluation questionnaire). Consulating Psychology Press, Palo AltoGoogle Scholar
  83. Steele JD, Kumar P, Ebmeier KP (2007) Blunted response to feedback information in depressive illness. Brain 130(Pt 9):2367–2374. doi:10.1093/brain/awm150 PubMedCrossRefGoogle Scholar
  84. Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J (2004) A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14(9):966–973. doi:10.1093/cercor/bhh057bhh057PubMedCrossRefGoogle Scholar
  85. Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 46(1):327–337. doi:10.1016/j.neuroimage.2009.01.058 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wagner G, Koch K, Schachtzabel C, Reichenbach JR, Sauer HS, Schlosser RGM (2008) Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J Psychiatry Neurosci 33(3):199–208PubMedPubMedCentralGoogle Scholar
  87. Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M, Heinze HJ, Bogerts B, Northoff G (2008) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40(4):1482–1494. doi:10.1016/j.neuroimage.2008.01.040 PubMedCrossRefGoogle Scholar
  88. Welborn BL, Papademetris X, Reis DL, Rajeevan N, Bloise SM, Gray JR (2009) Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc Cognit Affect Neurosci 4(4):328–339. doi:10.1093/scan/nsp028 CrossRefGoogle Scholar
  89. Zhou W, Chen D (2008) Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices. J Neurosci 28(53):14416–14421. doi:10.1523/JNEUROSCI.3148-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zuckerman M, Link K (1968) Construct validity for the sensation-seeking scale. J Consult Clin Psychol 32(4):420–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joshua M. Carlson
    • 1
  • Jiook Cha
    • 2
  • Tomer Fekete
    • 3
  • Tsafrir Greenberg
    • 4
  • Lilianne R. Mujica-Parodi
    • 5
  1. 1.Department of PsychologyNorthern Michigan UniversityMarquetteUSA
  2. 2.Department of PsychiatryColumbia University College of Physicians and Surgeons, The New York State Psychiatric InstituteNew YorkUSA
  3. 3.Laboratory for Perceptual Dynamics, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
  4. 4.Department of PsychologyStony Brook UniversityStony BrookUSA
  5. 5.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations