Brain Structure and Function

, Volume 221, Issue 7, pp 3591–3600 | Cite as

The timing of language learning shapes brain structure associated with articulation

  • Jonathan A. Berken
  • Vincent L. Gracco
  • Jen-Kai Chen
  • Denise Klein
Original Article


We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech–motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.


Bilingualism Magnetic resonance imaging Voxel-based morphometry Gray matter density Age of acquisition Putamen Motor cortex Accent Plasticity Skill learning Brain structure 



Jennifer Soles assisted with the experimental setup and subject recruitment. Megan Callahan assisted with the quantitative language assessment. The study was supported by funds from the Blema and Arnold Steinberg Family Foundation and grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to D. Klein and V. Gracco, the Social Sciences and Humanities Research Council of Canada (SSHRC) to Baum, Gracco, and Klein, and a Vanier Canada Doctoral Scholarship to J. Berken (NSERC).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


  1. Abutalebi J, Della Rosa PA, Gonzaga AK, Keim R, Costa A, Perani D (2013) The role of the left putamen in multilingual language production. Brain Lang 125(3):307–313CrossRefPubMedGoogle Scholar
  2. Ad-Dab’bagh Y, Einarson D, Lyttelton O, Muehlboeck J-S, Mok K, Ivanov O, Vincent RD, Lepage C, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) Proceedings of the 12th annual meeting of the organization for human brain mapping. NeuroImage, Florence.
  3. Berken JA, Gracco VL, Chen J-K, Watkins KE, Baum SM, Callahan M, Klein D (2015) Neural activation in speech production and reading aloud in native and non-native languages. NeuroImage 112:208–217CrossRefPubMedGoogle Scholar
  4. Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2008) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596CrossRefPubMedGoogle Scholar
  5. Boersma P (2001) Praat, a system for doing phonetics by computer. Glot Int 5(9/10):341–345Google Scholar
  6. Booth JR, Mehdiratta N, Burman DD, Bitan T (2008) Developmental increases in effective connectivity to brain regions involved in phonological processing during tasks with orthographic demands. Brain Res 1189:78–89CrossRefPubMedGoogle Scholar
  7. Buckley KA, Tobey EA (2011) Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users. Ear Hear 32(1):2–15. doi: 10.1097/AUD.0b013e3181e8534c PubMedGoogle Scholar
  8. Cobb T (2009) The compleat lexical tutor. Accessed 18 Sep 2012
  9. Christophe A, Guasti T, Nespor M, Dupoux E, Van Ooyen B (1997) Reflections on phonological bootstrapping: its role for lexical and syntactic acquisition. Lang Cogn Proc 12:585–612. doi: 10.1080/016909697386637 CrossRefGoogle Scholar
  10. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMedGoogle Scholar
  11. Collins D, Holmes C, Peters T, Evans AC (1995) Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp 3(3):190–208CrossRefGoogle Scholar
  12. Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72:443–454CrossRefPubMedPubMedCentralGoogle Scholar
  13. Draganski B, Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312CrossRefPubMedGoogle Scholar
  14. Flege JE, Munro MJ, MacKay IRA (1995) Factors affecting strength of perceived foreign accent in a second language. J Acoust Soc Am 97:3125–3134CrossRefPubMedGoogle Scholar
  15. Fonov V, Evan AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327CrossRefPubMedGoogle Scholar
  16. Frenck-Mestre C, Anton JL, Roth M, Vaid J, Viallet F (2005) Articulation in early and late bilinguals’ two languages: evidence from functional magnetic resonance imaging. NeuroReport 7:761–765CrossRefGoogle Scholar
  17. Gaser C, Schlaug G (2003) Gray matter differences between musicians and nonmusicians. Ann N Y Acad Sci 999:514–517CrossRefPubMedGoogle Scholar
  18. Gerber P, Schlaffke L, Heba S, Greenlee MW, Schultz T, Schmidt-Wilcke T (2014) Juggling revisited: a voxel-based morphometry study with expert jugglers. NeuroImage 95:320–325CrossRefPubMedGoogle Scholar
  19. Giraud AL, Lee HJ (2007) Predicting cochlear implant outcome from brain organisation in the deaf. Restor Neurol Neurosci 25:381–390PubMedGoogle Scholar
  20. Golestani N, Pallier C (2007) Anatomical correlates of foreign speech sound production. Cereb Cortex 17(4):929–934CrossRefPubMedGoogle Scholar
  21. Golestani N, Zatorre RJ (2004) Learning new sounds of speech: reallocation of neural substrates. NeuroImage 21(2):494–506CrossRefPubMedGoogle Scholar
  22. Golestani N, Molko N, Dehaene S, LeBihan D, Pallier C (2007) Brain structure predicts learning of foreign speech sounds. Cereb Cortex 17(3):575–582CrossRefPubMedGoogle Scholar
  23. Goswami U (2008) The development of reading across languages. Ann N Y Acad Sci 1145:1–12CrossRefPubMedGoogle Scholar
  24. Green DW (1998) Mental control of the bilingual lexico-semantic system. Biling Lang Cognit 1:67–81CrossRefGoogle Scholar
  25. He Q et al (2013) Decoding the neuroanatomic basis of reading ability. J Neurosci 33(31):12835–12843CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hernandez AE, Li P (2007) Age of acquisition: its neural and computational mechanisms. Psychol Bull 133(4):638–650CrossRefPubMedGoogle Scholar
  27. Hervais-Adelman AG, Moser-Mercer B, Golestani N (2011) Executive control of language in the bilingual brain: integrating the evidence from neuroimaging to neuropsychology. Front Psychol 2:234. doi: 10.3389/fpsyg.2011.00234 (eCollection 2011) CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hyde K, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29(10):3019–3025CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnson JS, Newport EL (1989) Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language. Cogn Psychol 21(1):60–99CrossRefPubMedGoogle Scholar
  30. Klein D, Zatorre RJ, Milner B, Meyer E, Evans AC (1994) Left putaminal activation when speaking a second language: evidence from PET. NeuroReport 5:2295–2297CrossRefPubMedGoogle Scholar
  31. Klein D, Milner B, Zatorre RJ, Meyer E, Evans AC (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci USA 92(7):2899–2903CrossRefPubMedPubMedCentralGoogle Scholar
  32. Klein D, Watkins KE, Zatorre RJ, Milner B (2006) Word and nonword repetition in bilingual subjects: a PET study. Hum Brain Mapp 27:153–161CrossRefPubMedGoogle Scholar
  33. Kuhl PK (2010) Brain mechanisms in early language acquisition. Neuron 65(7):713–727CrossRefGoogle Scholar
  34. Kurowski KM, Blumstein SE, Alexander M (1996) The foreign accent syndrome: a reconsideration. Brain Lang 54(1):1–25CrossRefPubMedGoogle Scholar
  35. Luk G, Bialystok E, Craik FI, Grady CL (2011) Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci 31(46):16808–16813CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12):1091–1101CrossRefPubMedGoogle Scholar
  37. Marchand WR, Lee JN, Thatcher JW, Hsu EW, Rashkin E, Suchy Y, Chelune G, Starr J, Barbera SS (2008) Putamen coactivation during motor task execution. NeuroReport 19(9):957–960CrossRefPubMedGoogle Scholar
  38. Marian V (2007) The Language Experience and Proficiency Questionnaire (LEAP-Q): assessing language profiles in bilinguals and multilinguals. J Speech Lang Hear Res 50(4):940–967CrossRefPubMedGoogle Scholar
  39. Mechelli A, Crinion JT, Noppeney U, O’Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004) Neurolinguistics: structural plasticity in the bilingual brain. Nature 431:757CrossRefPubMedGoogle Scholar
  40. Moyer A (2007) Empirical consideration on the age factor in L2 phonology. Issues Appl Ling 15(2):109–127Google Scholar
  41. Penfield W, Roberts L (1959) speech and brain mechanisms. Athenaeum, New YorkGoogle Scholar
  42. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a metaz-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16(10):1508–1521CrossRefPubMedGoogle Scholar
  43. Radua J, Canales-Rodriguez ES, Pomerol-Clotet E, Salvador R (2014) Validity of modulation and optimal setting for advanced voxel-based morphometry. NeuroImage 86:81–90CrossRefPubMedGoogle Scholar
  44. Reiterer SM, Hu X, Erb M, Rota G, Nardo D, Grodd W, Winkler S, Ackermann H (2011) Individual differences in audio-vocal speech imitation aptitude in late bilinguals: functional neuro-imaging and brain morphology. Front Psychol 2:271. doi: 10.3389/fpsyg.2011.00271 (eCollection 2011) PubMedPubMedCentralGoogle Scholar
  45. Ressel V, Pallier C, Ventura-Campos N, Díaz B, Roessler A, Ávila C, Sebastián-Gallés N (2012) An effect of bilingualism on the auditory cortex. J Neurosci 32(47):16597–16601CrossRefPubMedGoogle Scholar
  46. Saur D, Baumgaertner A, Moehring A, Büchel C, Bonnesen M, Rose M, Musso M, Meisel JM (2009) Word order processing in the bilingual brain. Neuropsycholgia 47(1):158–168CrossRefGoogle Scholar
  47. Schlaffke L, Lissek S, Lenz M, Brüne M, Juckel G, Hinrichs T, Platen P, Tegenthoff M, Schmidt-Wilcke T (2014) Sports and brain morphology—a voxel-based morphometry study with endurance athletes and martial arts. Neuroscience 259:35–42CrossRefPubMedGoogle Scholar
  48. Schön D, Magne C, Besson M (2004) The music of speech: music training facilitates pitch in both music and language. Psychophysiology 41(3):3410349CrossRefGoogle Scholar
  49. Shum M, Shiller DM, Baum SR, Gracco VL (2011) Sensorimotor integration for speech motor learning involves the inferior parietal cortex. Eur J Neurosci 34(11):1817–1822CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. ICEE Trans Med Imaging 17(1):87–97CrossRefGoogle Scholar
  51. Sowell ER, Thompson PM, Toga AW (2004) Mapping changes in the human cortex throughout the span of life. Neuroscientist 10(4):372–392CrossRefPubMedGoogle Scholar
  52. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New YorkGoogle Scholar
  53. Wartenburger I, Heekeren HR, Abutalebi J, Cappa SF, Villringer A, Perani D (2003) Early setting of grammatical processing in the bilingual brain. Neuron 37(1):159–170CrossRefPubMedGoogle Scholar
  54. Weber-Fox CM, Neville HJ (1996) Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. J Cogn Neurosci 8(3):231–236CrossRefPubMedGoogle Scholar
  55. Wechsler D (1981) Manual for the Wechsler Adult Intelligence Scale—revised. The Psychological Corporation, San AntonioGoogle Scholar
  56. Werker JF, Tees RC (1984) Phonemic and phonetic factors in adult cross-language speech perception. J Acoust Soc Am 75(6):1867–1878CrossRefGoogle Scholar
  57. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73CrossRefPubMedGoogle Scholar
  58. Zatorre RJ (2013) Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342(6158):585–589CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jonathan A. Berken
    • 1
    • 2
  • Vincent L. Gracco
    • 2
    • 3
  • Jen-Kai Chen
    • 1
  • Denise Klein
    • 1
    • 2
  1. 1.Cognitive Neuroscience UnitMontreal Neurological InstituteMontrealCanada
  2. 2.Centre for Research on Brain, Language, and MusicMcGill UniversityMontrealCanada
  3. 3.Haskins LaboratoriesNew HavenUSA

Personalised recommendations