Brain Structure and Function

, Volume 221, Issue 7, pp 3521–3546 | Cite as

Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study

  • Csaba AdoriEmail author
  • Swapnali Barde
  • Szilvia Vas
  • Karl Ebner
  • Jie Su
  • Camilla Svensson
  • Aleksander A. Mathé
  • Nicolas Singewald
  • Rainer R. Reinscheid
  • Mathias Uhlén
  • Kim Kultima
  • György Bagdy
  • Tomas Hökfelt
Original Article


Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS–NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.


Neuropeptide S (NPS) Arousal Glutamate Dopamine Preoptic area Septum Sleep Substance P Transmitter release Wakefulness 


Anatomical terms


Nucleus arcuatus


Dorsomedial nucleus of the hypothalamus


Dorsal raphe


Nucleus of the horizontal limb of the diagonal band


Kölliker-Fuse nucleus


Locus coeruleus


Laterodorsal tegmental/pedunculopontine tegmental nuclei


Lateral parabrachial nucleus


Lateral preoptic area


Lateral septum/medial septum border zone


Lateral septal nucleus, ventral part


Median preoptic nucleus


Medial preoptic area


Medial septum


Peri-coerulear cell cluster (of NPS neurons)


Parabrachial-precoeruleus region


Paraventricular thalamic nucleus, anterior part


Paraventricular hypothalamic nucleus


Perifornical area of the lateral hypothalamus


Suprachiasmatic nucleus


Septohypothalamic nucleus


Sublaterodorsal tegmental area


Ventro-lateral preoptic nucleus


Ventro-lateral subdivision of the periaqueductal central gray


Ventral tegmental area


Ventral tuberomamillary nucleus

Other non-trivial abbreviations


Adrenocorticotrophin hormone


Corticotrophin releasing factor


Choline acetyltransferase


Excessive daytime sleepiness






Histidine decarboxylase








In situ hybridization


Large pot-on-water


Large pot-on-water plus rebound sleep


Melanin concentrating hormone


Non-rapid eye movement sleep


Neuropeptide S


Neuropeptide S receptor 1




Quantitative in situ hybridization


Rapid eye movement sleep




Room temperature


Small pot-on-water


Small pot-on-water plus rebound sleep


Slow-wave sleep


Tyrosine hydroxylase


Obstructive sleep apnea syndrome


Vesicular glutamate transporter 2



This study was supported by the Swedish Research Council, Grants from Karolinska Institutet, the Rut&Arvid Wolff foundation for insomnia research, the National Hungarian Development Agency (Grant No. KTIA-NAP-13-1-2013-0001), the Hungarian Brain Research Program (Grant No. KTIA 13 NAP-A-II/14) and the Austrian Science Fund (FWF, Grant No. P25375). We are grateful for the excellent technical assistance of Blanca Silva-Lopez, Szilvia Deak and Agnes Ruzsits. We acknowledge the generous donation of antisera/antibodies to tyrosine hydroxylase (the late Dr. Menek Goldstein, NYU, New York, NY); orexin (Dr. Luis de Lecea, The Salk Institute, La Jolla, CA); histidine decarboxylase (the late Dr. John Walsh, CURE core facility, UCLA, Las Angeles, CA); vesicular glutamate transporter 2 (Dr. Masahiko Watanabe, Hokkaido University School of Medicine, Sapporo, Japan); galanin (Dr. Elvar Theodorsson, Linköping University, Linköping, Sweden); substance P (Dr. Ingrid Nylander, Uppsala University, Uppsala, and Dr. Lars Terenius, Karolinska Institutet, Stockholm, Sweden; choline acetyltransferase (Dr. Boyd Hartman, Department of Psychiatry, University of Minnesota, Minneapolis, MN).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.


  1. Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40(10):1457–1463PubMedCrossRefGoogle Scholar
  2. Ahnaou A, Drinkenburg WH (2012) Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology 65(4):195–205PubMedCrossRefGoogle Scholar
  3. Andersen ML, Nascimento DC, Machado RB, Roizenblatt S, Moldofsky H, Tufik S (2006) Sleep disturbance induced by substance P in mice. Behav Brain Res 167(2):212–218PubMedCrossRefGoogle Scholar
  4. Bernier V, Stocco R, Bogusky MJ, Joyce JG, Parachoniak C, Grenier K, Arget M, Mathieu MC, O’Neill GP, Slipetz D, Crackower MA, Tan CM, Therien AG (2006) Structure-function relationships in the neuropeptide S receptor: molecular consequences of the asthma-associated mutation N107I. J Biol Chem 281(34):24704–24712PubMedCrossRefGoogle Scholar
  5. Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. Classical transmitters in the CNS. Part I Handbook of chemical neuroanatomy, vol 2. Elsevier, AmsterdamGoogle Scholar
  6. Cao J, de Lecea L, Ikemoto S (2011) Intraventricular administration of neuropeptide S has reward-like effects. Eur J Pharmacol 658(1):16–21. doi: 10.1016/j.ejphar.2011.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990PubMedGoogle Scholar
  8. Christensson-Nylander I, Herrera-Marschitz M, Staines W, Hökfelt T, Terenius L, Ungerstedt U, Cuello C, Oertel WH, Goldstein M (1986) Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohistochemical studies. Exp Brain Res 64(1):169–192PubMedCrossRefGoogle Scholar
  9. Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK (2011) Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol 519(10):1867–1893PubMedCrossRefGoogle Scholar
  10. Coenen AM, van Luijtelaar EL (1985) Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav 35(4):501–504PubMedCrossRefGoogle Scholar
  11. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467PubMedCrossRefGoogle Scholar
  12. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62(Suppl. 232):1–55Google Scholar
  13. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95(1):322–327PubMedPubMedCentralCrossRefGoogle Scholar
  14. Domschke K, Reif A, Weber H, Richter J, Hohoff C, Ohrmann P, Pedersen A, Bauer J, Suslow T, Kugel H, Heindel W, Baumann C, Klauke B, Jacob C, Maier W, Fritze J, Bandelow B, Krakowitzky P, Rothermundt M, Erhardt A, Binder EB, Holsboer F, Gerlach AL, Kircher T, Lang T, Alpers GW, Strohle A, Fehm L, Gloster AT, Wittchen HU, Arolt V, Pauli P, Hamm A, Deckert J (2011) Neuropeptide S receptor gene—converging evidence for a role in panic disorder. Mol Psychiatry 16(9):938–948PubMedCrossRefGoogle Scholar
  15. Donner J, Haapakoski R, Ezer S, Melen E, Pirkola S, Gratacos M, Zucchelli M, Anedda F, Johansson LE, Söderhall C, Orsmark-Pietras C, Suvisaari J, Martin-Santos R, Torrens M, Silander K, Terwilliger JD, Wickman M, Pershagen G, Lönnqvist J, Peltonen L, Estivill X, D’Amato M, Kere J, Alenius H, Hovatta I (2010) Assessment of the neuropeptide S system in anxiety disorders. Biol Psychiatry 68(5):474–483PubMedCrossRefGoogle Scholar
  16. Ebner K, Rjabokon A, Pape HC, Singewald N (2011) Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress. Amino Acids 41(4):991–996PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Zhang WB, Agnati LF (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19(5):323–329PubMedCrossRefGoogle Scholar
  19. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404(6781):992–995PubMedCrossRefGoogle Scholar
  20. Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB (2002) Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115(1):285–294PubMedCrossRefGoogle Scholar
  21. Grahnstedt S, Ursin R (1985) Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep. Behav Brain Res 18(3):233–239PubMedCrossRefGoogle Scholar
  22. Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29(10):571–577PubMedCrossRefGoogle Scholar
  23. Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23(1):1–38PubMedCrossRefGoogle Scholar
  24. Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine hydroxylase-immunoreactive neurons in the rat brain classical transmitters in the CNS. Part I. Handbook of chemical neuroanatomy, vol 2. Elsevier, AmsterdamGoogle Scholar
  25. Huang HP, Zhu FP, Chen XW, Xu ZQ, Zhang CX, Zhou Z (2012) Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus. Front Mol Neurosci 5:29PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, Pape HC (2008) Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59(2):298–310PubMedPubMedCentralCrossRefGoogle Scholar
  28. Jungling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC (2012) Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. J Physiol 590(Pt 16):3701–3717PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kantor S, Jakus R, Molnar E, Gyongyosi N, Toth A, Detari L, Bagdy G (2005) Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 {6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline} and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther 315(2):921–930PubMedCrossRefGoogle Scholar
  30. Katai Z, Adori C, Kitka T, Vas S, Kalmar L, Kostyalik D, Tothfalusi L, Palkovits M, Bagdy G (2013) Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Psychopharmacology 228(3):439–449PubMedCrossRefGoogle Scholar
  31. Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G (2009) Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 205(2):482–487PubMedCrossRefGoogle Scholar
  32. Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunoreactive neurons and REM sleep architecture during REM rebound after a 3 day long REM deprivation. Neurochem Int 59(5):686–694PubMedCrossRefGoogle Scholar
  33. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kostyalik D, Katai Z, Vas S, Pap D, Petschner P, Molnar E, Gyertyan I, Kalmar L, Tothfalusi L, Bagdy G (2014) Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity. Exp Brain Res 232(3):935–946PubMedCrossRefGoogle Scholar
  35. Kovacs GG, Ando RD, Adori C, Kirilly E, Benedek A, Palkovits M, Bagdy G (2007) Single dose of MDMA causes extensive decrement of serotoninergic fibre density without blockage of the fast axonal transport in Dark Agouti rat brain and spinal cord. Neuropathol Appl Neurobiol 33(2):193–203PubMedCrossRefGoogle Scholar
  36. Kultima K, Nilsson A, Scholz B, Rossbach UL, Falth M, Andren PE (2009) Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol Cell Proteomics 8(10):2285–2295PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K (2011) The effects of neuropeptide S on general anesthesia in rats. Anesth Analg 112(4):845–849PubMedCrossRefGoogle Scholar
  38. Leger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P, Luppi PH (2010) Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 39(4):262–271PubMedCrossRefGoogle Scholar
  39. Li KY, Guan YZ, Krnjevic K, Ye JH (2009) Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology 111(6):1271–1278PubMedPubMedCentralCrossRefGoogle Scholar
  40. Liu X, Zeng J, Zhou A, Theodorsson E, Fahrenkrug J, Reinscheid RK (2011) Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain. J Comp Neurol 519(10):1847–1866PubMedCrossRefGoogle Scholar
  41. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11):4568–4576PubMedGoogle Scholar
  42. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRefGoogle Scholar
  43. Lukas M, Neumann ID (2012) Nasal application of neuropeptide S reduces anxiety and prolongs memory in rats: social versus non-social effects. Neuropharmacology 62(1):398–405PubMedCrossRefGoogle Scholar
  44. Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004(1–2):45–51PubMedCrossRefGoogle Scholar
  45. Markey KA, Kondo H, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17(1):79–85PubMedGoogle Scholar
  46. Matsuo S, Jang IS, Nabekura J, Akaike N (2003) alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons. J Neurophysiol 89(3):1640–1648PubMedCrossRefGoogle Scholar
  47. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23(29):9687–9695PubMedGoogle Scholar
  48. Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17(12):2563–2572PubMedCrossRefGoogle Scholar
  49. Mochizuki T, Kim J, Sasaki K (2010) Microinjection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell. Peptides 31(5):926–931PubMedCrossRefGoogle Scholar
  50. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133. doi: 10.1016/j.smrv.2006.08.003 PubMedCrossRefGoogle Scholar
  51. Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin LG, Hokfelt T (1995) Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 92(25):11819–11823PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ohning GV, Song M, Wong HC, Wu SV, Walsh JH (1998) Immunolocalization of gastrin-dependent histidine decarboxylase activity in rat gastric mucosa during feeding. Am J Physiol 275(4 Pt 1):G660–G667PubMedGoogle Scholar
  53. Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K (2014) Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett 581:94–97PubMedCrossRefGoogle Scholar
  54. Okamura N, Garau C, Duangdao DM, Clark SD, Jungling K, Pape HC, Reinscheid RK (2011) Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology 36(4):744–752PubMedCrossRefGoogle Scholar
  55. Parks GS, Wang L, Wang Z, Civelli O (2014) Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 522(17):3817–3833PubMedPubMedCentralCrossRefGoogle Scholar
  56. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Inc., AmsterdamGoogle Scholar
  57. Peng YL, Han RW, Chang M, Zhang L, Zhang RS, Li W, Han YF, Wang R (2010) Central neuropeptide S inhibits food intake in mice through activation of neuropeptide S receptor. Peptides 31(12):2259–2263. doi: 10.1016/j.peptides.2010.08.015 PubMedCrossRefGoogle Scholar
  58. Peterson GM, Shurlow CL (1992) Morphological evidence for a substance P projection from medial septum to hippocampus. Peptides 13(3):509–517PubMedCrossRefGoogle Scholar
  59. Pietras CO, Vendelin J, Anedda F, Bruce S, Adner M, Sundman L, Pulkkinen V, Alenius H, D’Amato M, Soderhall C, Kere J (2011) The asthma candidate gene NPSR1 mediates isoform specific downstream signalling. BMC pulmonary medicine 11:39PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pulga A, Ruzza C, Rizzi A, Guerrini R, Calo G (2012) Anxiolytic- and panicolytic-like effects of neuropeptide S in the mouse elevated T-maze. Eur J Neurosci 36(11):3531–3537PubMedCrossRefGoogle Scholar
  61. Reinscheid RK (2007) Phylogenetic appearance of neuropeptide S precursor proteins in tetrapods. Peptides 28(4):830–837PubMedPubMedCentralCrossRefGoogle Scholar
  62. Reinscheid RK, Xu YL (2005a) Neuropeptide S and its receptor: a newly deorphanized G protein-coupled receptor system. Neuroscientist Rev J Bring Neurobiol Neurol Psychiatry 11(6):532–538Google Scholar
  63. Reinscheid RK, Xu YL (2005b) Neuropeptide S as a novel arousal promoting peptide transmitter. FEBS J 272(22):5689–5693PubMedCrossRefGoogle Scholar
  64. Reinscheid RK, Xu YL, Okamura N, Zeng J, Chung S, Pai R, Wang Z, Civelli O (2005) Pharmacological characterization of human and murine neuropeptide s receptor variants. J Pharmacol Exp Ther 315(3):1338–1345PubMedCrossRefGoogle Scholar
  65. Roth AL, Marzola E, Rizzi A, Arduin M, Trapella C, Corti C, Vergura R, Martinelli P, Salvadori S, Regoli D, Corsi M, Cavanni P, Calo G, Guerrini R (2006) Structure-activity studies on neuropeptide S: identification of the amino acid residues crucial for receptor activation. J Biol Chem 281(30):20809–20816PubMedCrossRefGoogle Scholar
  66. Sakai K (2011) Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience 182:144–161. doi: 10.1016/j.neuroscience.2011.03.010 PubMedCrossRefGoogle Scholar
  67. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042PubMedPubMedCentralCrossRefGoogle Scholar
  68. Singewald N, Kaehler ST, Philippu A (1999) Noradrenaline release in the locus coeruleus of conscious rats is triggered by drugs, stress and blood pressure changes. Neuroreport 10(7):1583–1587PubMedCrossRefGoogle Scholar
  69. Sköld K, Svensson M, Norrman M, Sjögren B, Svenningsson P, Andren PE (2007) The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2–20 and peptides as sample quality indicators. Proteomics 7(24):4445–4456PubMedCrossRefGoogle Scholar
  70. Slattery DA, Naik RR, Grund T, Yen YC, Sartori SB, Fuchsl A, Finger BC, Elfving B, Nordemann U, Guerrini R, Calo G, Wegener G, Mathe AA, Singewald N, Czibere L, Landgraf R, Neumann ID (2015) Selective breeding for high anxiety introduces a synonymous SNP that increases neuropeptide S receptor activity. J Neurosci 35(11):4599–4613PubMedCrossRefGoogle Scholar
  71. Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, Ghatei MA, Bloom SR (2006) Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology 147(7):3510–3518PubMedCrossRefGoogle Scholar
  72. Spada J, Sander C, Burkhardt R, Hantzsch M, Mergl R, Scholz M, Hegerl U, Hensch T (2014) Genetic association of objective sleep phenotypes with a functional polymorphism in the neuropeptide S receptor gene. PLoS One 9(6):e98789PubMedPubMedCentralCrossRefGoogle Scholar
  73. Stanley BG (1993) Neuropeptide Y in multiple hypothalamic sites controls eating behaviour, endocrine, and autonomic systems for body energy balance. In: Colmers WF, Wahlestedt C (eds) The biology of neuropeptide Y and related peptides. Humana Press Inc., Totowa, pp 457–503Google Scholar
  74. Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinform 9:163CrossRefGoogle Scholar
  75. Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K (2014) Identification and quantification of neuropeptides in naive mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 130(2):199–214PubMedCrossRefGoogle Scholar
  76. Suchecki D, Lobo LL, Hipolide DC, Tufik S (1998) Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res 7(4):276–281PubMedCrossRefGoogle Scholar
  77. Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D (2007) The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27(7):1616–1630PubMedPubMedCentralCrossRefGoogle Scholar
  78. Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8(4):291–301PubMedCrossRefGoogle Scholar
  79. Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161(1):269–292PubMedCrossRefGoogle Scholar
  80. Theodorsson E, Rugarn O (2000) Radioimmunoassay for rat galanin: immunochemical and chromatographic characterization of immunoreactivity in tissue extracts. Scand J Clin Lab Invest 60(5):411–418PubMedCrossRefGoogle Scholar
  81. Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119(4):1033–1044PubMedCrossRefGoogle Scholar
  82. Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39(2–3):107–140PubMedCrossRefGoogle Scholar
  83. Vas S, Adori C, Konczol K, Katai Z, Pap D, Papp RS, Bagdy G, Palkovits M, Toth ZE (2013) Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS One 8(4):e59809PubMedPubMedCentralCrossRefGoogle Scholar
  84. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4(19):9Google Scholar
  85. Vila-Porcile E, Xu ZQ, Mailly P, Nagy F, Calas A, Hökfelt T, Landry M (2009) Dendritic synthesis and release of the neuropeptide galanin: morphological evidence from studies on rat locus coeruleus neurons. J Comp Neurol 516(3):199–212PubMedCrossRefGoogle Scholar
  86. von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259CrossRefGoogle Scholar
  87. Wegener G, Finger BC, Elfving B, Keller K, Liebenberg N, Fischer CW, Singewald N, Slattery DA, Neumann ID, Mathe AA (2012) Neuropeptide S alters anxiety, but not depression-like behaviour in Flinders Sensitive Line rats: a genetic animal model of depression. Int J Neuropsychopharmacol 15(3):375–387PubMedCrossRefGoogle Scholar
  88. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43(4):487–497PubMedCrossRefGoogle Scholar
  89. Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK (2007) Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol 500(1):84–102PubMedCrossRefGoogle Scholar
  90. Zecharia A (2010) Histamine: from flop to flip-flop. J Physiol 588(Pt 21):4057PubMedPubMedCentralCrossRefGoogle Scholar
  91. Zhao P, Shao YF, Zhang M, Fan K, Kong XP, Wang R, Hou YP (2012) Neuropeptide S promotes wakefulness through activation of the posterior hypothalamic histaminergic and orexinergic neurons. Neuroscience 207:218–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Csaba Adori
    • 1
    Email author
  • Swapnali Barde
    • 1
  • Szilvia Vas
    • 2
    • 3
  • Karl Ebner
    • 4
  • Jie Su
    • 5
  • Camilla Svensson
    • 5
  • Aleksander A. Mathé
    • 6
  • Nicolas Singewald
    • 4
  • Rainer R. Reinscheid
    • 7
  • Mathias Uhlén
    • 8
    • 9
  • Kim Kultima
    • 10
  • György Bagdy
    • 2
    • 3
  • Tomas Hökfelt
    • 1
  1. 1.Retzius Laboratory, Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Department of PharmacodynamicsSemmelweis UniversityBudapestHungary
  3. 3.Neuropsychopharmacology and Neurochemistry Research GroupHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)Leopold-Franzens-University of InnsbruckInnsbruckAustria
  5. 5.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  6. 6.Section of Psychiatry, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
  7. 7.Department of Pharmaceutical SciencesUniversity of California IrvineIrvineUSA
  8. 8.Science for Life Laboratory, Department of NeuroscienceKarolinska InstitutetStockholmSweden
  9. 9.Science for Life Laboratory, Albanova University CenterRoyal Institute of TechnologyStockholmSweden
  10. 10.Department of Medical Science Cancer Pharmacology and Computational Medicine, Academiska SjukhusetUppsala UniversityUppsalaSweden

Personalised recommendations