Brain Structure and Function

, Volume 221, Issue 7, pp 3445–3473

Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice

  • Marcos Otero-García
  • Carmen Agustín-Pavón
  • Enrique Lanuza
  • Fernando Martínez-García
Original Article

Abstract

Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.

Keywords

Amygdala Bed nucleus of the stria terminalis Accumbens Maternal behaviour Sociosexual brain Neurosecretory cells 

Abbreviations

10N

Dorsal motor nucleus of the vagus

12N

Hypoglossal nucleus

3V

Third ventricle

4n

Trochlear nerve or its root

4V

4th ventricle

A1

A1 noradrenaline cells

AC

Anterior commissural nucleus

AC

Anterior commissural nucleus

aca

Anterior commissure, anterior part

Acb

Accumbens nucleus

AcbC

Accumbens nucleus, core

AcbSh

Accumbens nucleus, shell

ACo

Anterior cortical amygdaloid nucleus

acp

Anterior commissure, posterior part

AD

Anterodorsal thalamic nucleus

ADP

Anterodorsal preoptic nucleus

AHA

Anterior hypothalamic area, anterior part

AHP

Anterior hypothalamic area, posterior part

AIP

Agranular insular cortex, posterior part

AM

Anteromedial thalamic nucleus

Amb

Ambiguus nucleus

AN

Accessory nuclei

AP

Area postrema

APir

Amygdalopiriform transition area

Aq

Aqueduct (Sylvius)

Arc

Arcuate hypothalamic nucleus

AStr

Amygdalostriatal transition area

AV

Anteroventral thalamic nucleus

AVP

Arginine vasopressin

AVPe

Anteroventral periventricular nucleus

AVP-ir

Arginine vasopressin immunoreactive

AVV

Anteroventral thalamic nucleus, ventral part

BAC

Bed nucleus of the anterior commissure

BAOT

Bed nucleus of the accessory olfactory

Bar

Barrington’s nucleus

BLA

Basolateral amygdaloid nucleus, anterior

BLV

Basolateral amygdaloid nucleus, ventral

BMA

Basomedial amygdaloid nucleus, anterior

BST

Bed nucleus of the stria terminalis

BSTA

Bed nucleus of the stria terminalis, anterior part

BSTIA

Bed nucleus of the stria terminalis, intraamygdaloid division

BSTLD

Bed nucleus of the stria terminalis, lateral division, dorsal part

BSTLP

Bed nucleus of the stria terminalis, lateral division, posterior part

BSTLV

Bed nucleus of the stria terminalis, lateral division, ventral part

BSTMA

Bed nucleus of the stria terminalis, medial division, anterior part

BSTMP

Bed nucleus of the stria terminalis, medial division, posterior part

BSTMPI

Bed nucleus of the stria terminalis, medial division, posterointermediate part

BSTMPL

Bed nucleus of the stria terminalis, medial division, posterolateral part

BSTMPM

Bed nucleus of the stria terminalis, medial division, posteromedial part

BSTMV

Bed nucleus of the stria terminalis, medial division, ventral part

BSTS

Bed nucleus of the stria terminalis, supracapsular part

cc

Corpus callosum

CC

Central canal

Ce

Central amygdaloid nucleus

CeC

Central amygdaloid nucleus, capsular part

CeL

Central amygdaloid nucleus, lateral division

CeM

Central amygdaloid nucleus, medial division

CeMAD

Central amygdaloid nucleus, medial division, anterodorsal part

CeMAV

Central amygdaloid nucleus, medial division, anteroventral part

CGPn

Central grey of the pons

Cl

Claustrum

CL

Centrolateral thalamic nucleus

CM

Central medial thalamic nucleus

cp

Cerebral peduncle, basal part

CPu

Caudate putamen (striatum)

cst

Commissural stria terminalis

Cu

Cuneate nucleus

CxA

Cortex–amygdala transition zone

D3V

Dorsal third ventricle

DEn

Dorsal endopiriform nucleus

DG

Dentate gyrus

DLPAG

Dorsolateral periaqueductal grey

DM

Dorsomedial hypothalamic nucleus

DMPAG

Dorsomedial periaqueductal grey

DMTg

Dorsomedial tegmental nucleus

DP

Dorsal peduncular cortex

DpMe

Deep mesencephalic nucleus

DRC

Dorsal raphe nucleus, caudal part

DRI

Dorsal raphe nucleus, interfascicular part

DTg

Dorsal tegmental nucleus

DTgP

Dorsal tegmental nucleus, pericentral part

DTM

Dorsal tuberomammillary nucleus

DTT

Dorsal tenia tecta

ECu

External cuneate nucleus

EW

Edinger–Westphal nucleus

f

Fornix

F

Nucleus of the fields of Forel

FG

Fluorogold

fi

Fimbria of the hippocampus

fmi

Forceps minor of the corpus callosum

fr

Fasciculus retroflexus

GrDG

Granular layer of the dentate gyrus

Gus

Gustatory thalamic nucleus

HDB

Nucleus of the horizontal limb of the diagonal band

I

Intercalated nuclei of the amygdala

IAD

Interanterodorsal thalamic nucleus

ic

Internal capsule

ICj

Islands of Calleja

ICjM

Islands of Calleja, major island

ICjvm

Islands of Calleja, ventromedial island

icp

Inferior cerebellar peduncle

IG

Indusium griseum

IL

Infralimbic cortex

IM

Intercalated amygdaloid nucleus, main part

In

Intercalated nucleus of the medulla

IO

Inferior olive

IOD

Inferior olive, dorsal nucleus

IPAC

Interstitial nucleus of the posterior limb of the anterior commissure

IPACL

Lateral interstitial nucleus of the posterior limb of the anterior commissure

IPACM

Medial interstitial nucleus of the posterior limb of the anterior commissure

IRt

Intermediate reticular nucleus

KF

Kölliker-Fuse nucleus

La

Lateral amygdaloid nucleus

LA

Lateroanterior hypothalamic nucleus

LaDL

Lateral amygdaloid nucleus, dorsolateral part

LaVL

Lateral amygdaloid nucleus, ventrolateral part

LaVM

Lateral amygdaloid nucleus, ventromedial part

LC

Locus coeruleus

LDTg

Laterodorsal tegmental nucleus

LDTgV

Laterodorsal tegmental nucleus, ventral part

LEnt

Lateral entorhinal cortex

LGP

Lateral globus pallidus

LH

Lateral hypothalamic area

LHb

Lateral habenular nucleus

lo

Lateral olfactory tract

LPBE

Lateral parabrachial nucleus, external part

LPBS

Lateral parabrachial nucleus, superior part

LPBV

Lateral parabrachial nucleus, ventral part

LPMR

Lateral posterior thalamic nucleus, mediodorsal part

LPO

Lateral preoptic area

LRt

Lateral reticular nucleus

LS

Lateral septum

LSD

Lateral septal nucleus, dorsal part

LSI

Lateral septal nucleus, intermediate part

LSV

Lateral septal nucleus, ventral part

LV

Lateral ventricle

maopt

Medial accessory optic tract

MCLH

Magnocellular nucleus of the lateral hypothalamus

MCPO

Magnocellular preoptic nucleus

MD

Mediodorsal thalamic nucleus

MdD

Medullary reticular nucleus, dorsal part

MdV

Medullary reticular nucleus, ventral part

Me

Medial amygdaloid nucleus

Me5

Mesencephalic trigeminal nucleus

MeA

Medial amygdaloid nucleus, anterior part

MeAD

Medial amygdaloid nucleus, anterior dorsal part

MeAV

Medial amygdaloid nucleus, anteroventral part

MePD

Medial amygdaloid nucleus, posterodorsal part

MePV

Medial amygdaloid nucleus, posteroventral part

mfb

Medial forebrain bundle

MGP

Medial globus pallidus (entopeduncular nucleus)

MHb

Medial habenular nucleus

ml

Medial lemniscus

mlf

Medial longitudinal fasciculus

MnPO

Median preoptic nucleus

MPA

Medial preoptic area

MPB

Medial parabrachial nucleus

MPO

Medial preoptic nucleus

MPOL

Medial preoptic nucleus, lateral part

MPOM

Medial preoptic nucleus, medial part

MS

Medial septal nucleus

mt

Mammillothalamic tract

mtg

Mammillotegmental tract

MTu

Medial tuberal nucleus

MVe

Medial vestibular nucleus

mvStP

Medioventral striato-pallidum

NADPHd

Nicotinamide adenine dinucleotide phosphate diaphorase

ns

Nigrostriatal bundle

O

Nucleus O

opt

Optic tract

OT

Oxytocin

OT-ir

Oxytocin-like immunoreactive (referring to immunostaining using antibodies raised against oxytocin or against its specific neurophysin)

OTR

Oxytocin receptor

PaAP

Paraventricular hypothalamic nucleus, anterior parvicellular

PAG

Periaqueductal grey

PaL

Paraventricular hypothalamic nucleus, lateral part

PaM

Paraventricular hypothalamic nucleus, medial part

PaPo

Paraventricular hypothalamic nucleus, posterior part

PaV

Paraventricular hypothalamic nucleus, ventral part

PB

Phosphate buffer

PBS

Phosphate-buffered saline

PC

Paracentral thalamic nucleus

Pc

Posterior commissure

PCom

Nucleus of the posterior commissure

Pe

Periventricular hypothalamic nucleus

PeF

Perifornical nucleus

PF

Parafascicular thalamic nucleus

PH

Posterior hypothalamic area

Pir

Piriform cortex

PLCo

Posterolateral cortical amygdaloid nucleus

PMCo

Posteromedial cortical amygdaloid nucleus

PMD

Premammillary nucleus, dorsal part

PMn

Paramedian reticular nucleus

PMnR

Paramedian raphe nucleus

PMV

Premammillary nucleus, ventral part

PnC

Pontine reticular nucleus, caudal part

PO

Periolivary region

Pr5

Principal sensory trigeminal nucleus

PRh

Perirhinal cortex

PrL

Prelimbic cortex

PSTh

Parasubthalamic nucleus

PT

Paratenial thalamic nucleus

PV

Paraventricular thalamic nucleus

PVA

Paraventricular thalamic nucleus, anterior part

Py

Pyramidal cell layer of the hippocampus

Rad

Stratum radiatum of the hippocampus

Re

Reuniens thalamic nucleus

RI

Rostral interstitial nucleus of the medial longitudinal fasciculus

RLi

Rostral linear nucleus of the raphe

RMg

Raphe magnus nucleus

RPF

Retroparafascicular nucleus

RRF

Retrorubral field

rs

Rubrospinal tract

Rt

Reticular thalamic nucleus

SCh

Suprachiasmatic nucleus

SCO

Subcommissural organ

scp

Superior cerebellar peduncle

SFi

Septofimbrial nucleus

SFO

Subfornical organ

Shi

Septohippocampal nucleus

SHy

Septohypothalamic nucleus

SI

Substantia innominata

SL

Semilunar nucleus

SLu

Stratum lucidum, hippocampus

SM

Nucleus of the stria medullaris

sm

Stria medullaris of the thalamus

SN

Substantia nigra

Sol

Nucleus of the solitary tract

sol

Solitary tract

SON

Supraoptic nucleus

SOR

Supraoptic nucleus, retrochiasmatic part

sp5

Spinal trigeminal tract

st

Stria terminalis

StA

Striatal part of the preoptic area

Su3

Supraoculomotor periaqueductal grey

Su5

Supratrigeminal nucleus

SubB

Subbrachial nucleus

SubC

Subcoeruleus nucleus

TBS

TRIS-buffered saline

TC

Tuber cinereum area

Te

Terete hypothalamic nucleus

Tu

Olfactory tubercle

Unc

Uncinate fasciculus

V1aR

Arginine vasopressin receptor type 1a

V1bR

Arginine vasopressin receptor type 1b

VA

Ventral anterior thalamic nucleus

VDB

Nucleus of the vertical limb of the diagonal band

VEn

Ventral endopiriform nucleus

VLPO

Ventrolateral preoptic nucleus

VM

Ventromedial thalamic nucleus

VMH

Ventromedial hypothalamic nucleus

VMHC

Ventromedial hypothalamic nucleus, central part

VMHDM

Ventromedial hypothalamic nucleus, dorsomedial part

VMHVL

Ventromedial hypothalamic nucleus, ventrolateral part

VMPO

Ventromedial preoptic nucleus

VOLT

Vascular organ of the lamina terminalis

VP

Ventral pallidum

vsc

Ventral spinocerebellar tract

VTA

Ventral tegmental area

VTg

Ventral tegmental nucleus

VTM

Ventral tuberomammillary nucleus

VTT

Ventral tenia tecta

Xi

Xiphoid thalamic nucleus

ZI

Zona incerta

References

  1. Banczerowski P et al (2003) Lesion of the amygdala on the right and left side suppresses testosterone secretion but only left-sided intervention decreases serum luteinizing hormone level. J Endocrinol Invest 26(5):429–434PubMedCrossRefGoogle Scholar
  2. Beery AK, Lacey EA, Francis DD (2008) Oxytocin and vasopressin receptor distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi and Ctenomys sociabilis). J Comp Neurol 507(6):1847–1859PubMedCrossRefGoogle Scholar
  3. Belenky M et al (1992) Ultrastructural immunolocalization of rat oxytocin-neurophysin in transgenic mice expressing the rat oxytocin gene. Brain Res 583(1–2):279–286PubMedCrossRefGoogle Scholar
  4. Ben-Barak Y et al (1985) Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies. J Neurosci 5(1):81–97PubMedGoogle Scholar
  5. Bielsky IF et al (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47(4):503–513PubMedCrossRefGoogle Scholar
  6. Bosch OJ (2011) Maternal nurturing is dependent on her innate anxiety: the behavioral roles of brain oxytocin and vasopressin. Horm Behav 59(2):202–212PubMedCrossRefGoogle Scholar
  7. Breiter HC et al (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17(5):875–887PubMedCrossRefGoogle Scholar
  8. Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192(3):423–435PubMedCrossRefGoogle Scholar
  9. Buijs RM et al (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433PubMedCrossRefGoogle Scholar
  10. Butovsky E et al (2006) Chronic exposure to ∆9-tetrahydrocannabinol downregulates oxytocin and oxytocin-associated neurophysin in specific brain areas. Mol Cell Neurosci 31(4):795–804PubMedCrossRefGoogle Scholar
  11. Bychowski ME, Mena JD, Auger CJ (2013) Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition. Neuroscience 246:52–58PubMedCrossRefGoogle Scholar
  12. Cádiz-Moretti B, Martínez-García F, Lanuza E (2013) Neural substrate to associate odorants and pheromones: convergence of projections from the main and accessory olfactory bulbs in mice. In: East ML, Dehnhard M (eds) Chemical signals in vertebrates 12. Springer, New York, pp 269–275. doi:10.1007/978-1-4614-5927-9 Google Scholar
  13. Caffé AR et al (1989) Vasopressin and oxytocin systems in the brain and upper spinal cord of Macaca fascicularis. J Comp Neurol 287(3):302–325PubMedCrossRefGoogle Scholar
  14. Caldwell H, Young 3rd WS (2006) Oxytocin and vasopressin: genetics and behavioral implications. Handbook of neurochemistry and molecular neurobiology, pp 573–607. doi:10.1007/978-0-387-30381-9_25Google Scholar
  15. Caldwell HK, Wersinger SR, Young WS 3rd (2008) The role of the vasopressin 1b receptor in aggression and other social behaviours. Prog Brain Res 170:65–72PubMedCrossRefGoogle Scholar
  16. Campbell P, Ophir AG, Phelps SM (2009) Central vasopressin and oxytocin receptor distributions in two species of singing mice. J Comp Neurol 516(4):321–333PubMedCrossRefGoogle Scholar
  17. Carter CS et al (2008) Oxytocin, vasopressin and sociality. Prog Brain Res 170:331–336PubMedCrossRefGoogle Scholar
  18. Castel M, Morris JF (1988) The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24(3):937–966PubMedCrossRefGoogle Scholar
  19. Caughey SD et al (2011) Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat. J Neuroendocrinol 23(11):1113–1124PubMedCrossRefGoogle Scholar
  20. Chamero P et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450(7171):899–902PubMedCrossRefGoogle Scholar
  21. Choleris E, Pfaff DW, Kavaliers M (2013) Oxytocin, vasopressin and related peptides in the regulation of behavior. In: Oxytocin, vasopressin and related peptides in the regulation of behavior. pp 379–381. http://ebooks.cambridge.org/ref/id/CBO9781139017855
  22. Condés-Lara M et al (2007) Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord. Brain Res 1160(1):20–29PubMedCrossRefGoogle Scholar
  23. DeVries GJ et al (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233(2):236–254PubMedCrossRefGoogle Scholar
  24. Dölen G et al (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501(7466):179–84. http://www.ncbi.nlm.nih.gov/pubmed/24025838
  25. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322(5903):900–904PubMedCrossRefGoogle Scholar
  26. Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494(1):75–107PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dubois-Dauphin M, Barberis C, De Bilbao F (1996) Vasopressin receptors in the mouse (Mus musculus) brain: sex-related expression in the medial preoptic area and hypothalamus. Brain Res 743(1–2):32–39PubMedCrossRefGoogle Scholar
  28. Eaton JL et al (2012) Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol 54(1):92–97PubMedCrossRefGoogle Scholar
  29. Egashira N et al (2007) Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res 178(1):123–127PubMedCrossRefGoogle Scholar
  30. Evans DW et al. (2014) Social cognition and brain morphology: implications for developmental brain dysfunction. Brain Imaging BehavGoogle Scholar
  31. Feldman R et al (2010) Natural variations in maternal and paternal care are associated with systematic changes in oxytocin following parent-infant contact. Psychoneuroendocrinology 35(8):1133–1141. doi:10.1016/j.psyneuen.2010.01.013 PubMedCrossRefGoogle Scholar
  32. Garcia-Moreno F et al (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13(6):680–689PubMedCrossRefGoogle Scholar
  33. Glasgow E et al (1999) Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140(11):5391–5401PubMedCrossRefGoogle Scholar
  34. Gregory R et al (2015) Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women. Horm Behav 69:82–88PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hammock EAD, Levitt P (2013) Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci 7:195. doi:10.3389/fnbeh.2013.00195 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hatton GI, Cobbett P, Salm AK (1985) Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res Bull 14(2):123–132PubMedCrossRefGoogle Scholar
  37. Hawthorn J, Ang VT, Jenkins JS (1985) Effects of lesions in the hypothalamic paraventricular, supraoptic and suprachiasmatic nuclei on vasopressin and oxytocin in rat brain and spinal cord. Brain Res 346(1):51–57PubMedCrossRefGoogle Scholar
  38. Hermes MLHJ et al (1988) Oxytocinergic innervation of the brain of the garden dormouse (Eliomys quercinus L.). J Comp Neurol 273:252–262PubMedCrossRefGoogle Scholar
  39. Honda K, Higuchi T (2010a) Effects of unilateral electrolytic lesion of the dorsomedial nucleus of the hypothalamus on milk-ejection reflex in the rat. J Reprod Dev 56(1):98–102PubMedCrossRefGoogle Scholar
  40. Honda K, Higuchi T (2010b) Electrical activities of neurones in the dorsomedial hypothalamic nucleus projecting to the supraoptic nucleus during milk-ejection reflex in the rat. J Reprod Dev 56(3):336–340PubMedCrossRefGoogle Scholar
  41. Hou-Yu A et al (1986) Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure. Neuroendocrinology 44(2):235–246PubMedCrossRefGoogle Scholar
  42. Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308(5719):245–248PubMedCrossRefGoogle Scholar
  43. Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45(5):1033–1041PubMedCrossRefGoogle Scholar
  44. Insel TR et al (1993) Gonadal steroids have paradoxical effects on brain oxytocin receptors. J Neuroendocrinol 5(6):619–628PubMedCrossRefGoogle Scholar
  45. Isogai Y et al (2011) Molecular organization of vomeronasal chemoreception. Nature 478(7368):241–245PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jin D et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45PubMedCrossRefGoogle Scholar
  47. Jirikowski GF, Ramalho-Ortigao FJ, Caldwell JD (1991) Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 23(10):476–480Google Scholar
  48. Kang N, Baum MJ, Cherry JA (2009) A direct main olfactory bulb projection to the “vomeronasal” amygdala in female mice selectively responds to volatile pheromones from males. Eur J Neurosci 29(3):624–634PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kiyama H, Emson PC (1990) Evidence for the co-expression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurohypophysin messenger ribonucleic acids by hybridization histochemistry. J Neuroendocrinol 2(3):257–259PubMedCrossRefGoogle Scholar
  50. Knobloch HS et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566. doi:10.1016/j.neuron.2011.11.030 PubMedCrossRefGoogle Scholar
  51. Krisch B (1976) Immunohistochemical and electron microscopic study of the rat hypothalamic nuclei and cell clusters under various experimental conditions. Possible sites of hormone release. Cell Tissue Res 174(1):109–127PubMedCrossRefGoogle Scholar
  52. Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25(3–4):150–176PubMedCrossRefGoogle Scholar
  53. Lim MM, Murphy AZ, Young LJ (2004) Ventral striatopallidal oxytocin and vasopressin v1a receptors in the monogamous prairie vole (Microtus ochrogaster). J Comp Neurol 468(4):555–570PubMedCrossRefGoogle Scholar
  54. Liu H et al (1994) Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci USA 91(3):1009–1013PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRefGoogle Scholar
  56. Lukas M et al (2013) Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38(6):916–926PubMedCrossRefGoogle Scholar
  57. Manning M et al (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628PubMedPubMedCentralCrossRefGoogle Scholar
  58. Markowitsch HJ (1998) Differential contribution of right and left amygdala to affective information processing. Behav Neurol 11(4):233–244. http://www.ncbi.nlm.nih.gov/pubmed/11568425
  59. Martínez-García F et al (2012) Chapter 6—piriform cortex and amygdala. In: GP Charles Watson, George Paxinos, Luis Puelles, Charles Watson, L Puelles (eds) The mouse nervous system, pp 140–172. Academic Press, San Diego. http://www.sciencedirect.com/science/article/pii/B9780123694973100068
  60. Mottolese R et al (2014) Switching brain serotonin with oxytocin. Proceedings of the National Academy of Sciences of the United States of America, vol 111, issue 23, pp 8637–42. http://www.ncbi.nlm.nih.gov/pubmed/24912179
  61. Melis MR et al (2007) Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci 26(4):1026–1035PubMedCrossRefGoogle Scholar
  62. Merighi A et al (1989) Ultrastructural localization of neuropeptides and GABA in rat dorsal horn: a comparison of different immunogold labeling techniques. J Histochem Cytochem 37(4):529–540PubMedCrossRefGoogle Scholar
  63. Meyer-Lindenberg A et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538PubMedCrossRefGoogle Scholar
  64. Mezey E, Kiss JZ (1991) Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129(4):1814–1820PubMedCrossRefGoogle Scholar
  65. Mohr E et al (1988) Expression of the vasopressin and oxytocin genes in rats occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett 242(1):144–148PubMedCrossRefGoogle Scholar
  66. Muchlinski AE, Johnson DJ, Anderson DG (1988) Electron microscope study of the association between hypothalamic blood vessels and oxytocin-like immunoreactive neurons. Brain Res Bull 20(2):267–271PubMedCrossRefGoogle Scholar
  67. Mullis K, Kay K, Williams DL (2013) Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res 1513:85–91PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nephew BC, Bridges RS (2008) Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacol Biochem Behav 91(1):77–83PubMedPubMedCentralCrossRefGoogle Scholar
  69. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci 35(11):649–659. http://dx.doi.org/10.1016/j.tins.2012.08.004
  70. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257PubMedCrossRefGoogle Scholar
  71. Ni RJ et al (2014) Distribution of vasopressin, oxytocin and vasoactive intestinal polypeptide in the hypothalamus and extrahypothalamic regions of tree shrews. Neuroscience 265:124–136PubMedCrossRefGoogle Scholar
  72. Nishimori K et al (2008) New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance. Prog Brain Res 170:79–90PubMedCrossRefGoogle Scholar
  73. Nodari F et al (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28(25):6407–6418PubMedPubMedCentralCrossRefGoogle Scholar
  74. Numan M, Numan M (1996) A lesion and neuroanatomical tract-tracing analysis of the role of the bed nucleus of the stria terminalis in retrieval behavior and other aspects of maternal responsiveness in rats. Dev Psychobiol 29(1):23–51PubMedCrossRefGoogle Scholar
  75. Numan M, Woodside B (2010) Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behav Neurosci 124(6):715–741PubMedCrossRefGoogle Scholar
  76. Numan M et al (1988) Axon-sparing lesions of the preoptic region and substantia innominata disrupt maternal behavior in rats. Behav Neurosci 102(3):381–396PubMedCrossRefGoogle Scholar
  77. Olazábal DE, Young LJ (2006) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141(2):559–568PubMedCrossRefGoogle Scholar
  78. Olazabal DE et al (2002) MPOA cytotoxic lesions and maternal behavior in the rat: effects of midpubertal lesions on maternal behavior and the role of ovarian hormones in maturation of MPOA control of maternal behavior. Horm Behav 41(2):126–138PubMedCrossRefGoogle Scholar
  79. Olucha-Bordonau FE et al (2014) Amygdala: structure and function. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 441–490Google Scholar
  80. Otero-Garcia M et al (2014) Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Struct Funct 219(3):1055–1081PubMedCrossRefGoogle Scholar
  81. Pagani JH et al (2015) Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. Genes Brain Behav 14(2):167–176PubMedPubMedCentralCrossRefGoogle Scholar
  82. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  83. Pedersen CA (1997) Oxytocin control of maternal behavior. Regulation by sex steroids and offspring stimuli. Ann N Y Acad Sci 807:126–145PubMedCrossRefGoogle Scholar
  84. Pedersen CA et al (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108(6):1163–1171PubMedCrossRefGoogle Scholar
  85. Pobbe RLH et al (2012) Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 61(3):436–444. doi:10.1016/j.yhbeh.2011.10.010 PubMedCrossRefGoogle Scholar
  86. Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198(1):45–64PubMedCrossRefGoogle Scholar
  87. Roberts SA et al (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519(12):2434–2474PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rood BD et al (2013) Site of origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 521(10):2321–2358PubMedCrossRefGoogle Scholar
  90. Rosen GJ et al (2008) Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience 155(3):809–817PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ross HE et al (2009) Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162(4):892–903. doi:10.1016/j.neuroscience.2009.05.055 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sabatier N, Shibuya I, Dayanithi G (2004) Intracellular calcium increase and somatodendritic vasopressin release by vasopressin receptor agonists in the rat supraoptic nucleus: involvement of multiple intracellular transduction signals. J Neuroendocrinol 16(3):221–236PubMedCrossRefGoogle Scholar
  93. Sanchez MA, Dominguez R (1995) Differential-effects of unilateral lesions in the medial amygdala on spontaneous and induced ovulation. Brain Res Bull 38(4):313–317. <Go to ISI>://A1995RV80800002Google Scholar
  94. Sarnyai Z, Kovács GL (1994) Role of oxytocin in the neuroadaptation to drugs of abuse. Psychoneuroendocrinology 19(1):85–117PubMedCrossRefGoogle Scholar
  95. Shahrokh DK et al (2010) Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 151(5):2276–2286PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688PubMedCrossRefGoogle Scholar
  97. Staes N et al (2014) Oxytocin and vasopressin receptor gene variation as a proximate base for inter- and intraspecific behavioral differences in bonobos and chimpanzees. Plos One 9(11):e113364. doi:10.1371/journal.pone.0113364 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76(1):142–159. doi:10.1016/j.neuron.2012.09.025 PubMedCrossRefGoogle Scholar
  99. Succu S et al (2008) Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 28(4):813–821. http://www.ncbi.nlm.nih.gov/pubmed/18671741
  100. Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194(3):555–570PubMedCrossRefGoogle Scholar
  101. Takahashi A, Miczek KA (2013) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44CrossRefGoogle Scholar
  102. Takano S et al (1992) Lesion and electrophysiological studies on the hypothalamic afferent pathway of the milk ejection reflex in the rat. Neuroscience 50(4):877–883PubMedCrossRefGoogle Scholar
  103. Tang Y et al (2014) Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain. Neuropharmacology 77:277–284CrossRefPubMedGoogle Scholar
  104. Telleria-Diaz A, Grinevich VV, Jirikowski GF (2001) Colocalization of vasopressin and oxytocin in hypothalamic magnocellular neurons in water-deprived rats. Neuropeptides 35(3–4):162–167PubMedCrossRefGoogle Scholar
  105. Tobin V, Leng G, Ludwig M (2012) The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol 3:261. doi:10.3389/fphys.2012.00261 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Toth I, Neumann ID (2013) Animal models of social avoidance and social fear. Cell Tissue Res 354(1):107–118PubMedCrossRefGoogle Scholar
  107. Trueta C, De-Miguel FF (2012) Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol 3:319. doi:10.3389/fphys.2012.00319 PubMedPubMedCentralGoogle Scholar
  108. Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521(7):1633–1663PubMedCrossRefGoogle Scholar
  109. Valesky EM et al (2012) Distribution of oxytocin- and vasopressin-immunoreactive neurons in the brain of the eusocial mole rat (Fukomys anselli). Anat Rec 295(3):474–480CrossRefGoogle Scholar
  110. Veenema AH, Neumann ID (2008) Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res 170:261–276PubMedCrossRefGoogle Scholar
  111. Veinante P, Freund-Mercier MJ (1997) Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. J Comp Neurol 383(3):305–325PubMedCrossRefGoogle Scholar
  112. Wang W, Lufkin T (2000) The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 227(2):432–449PubMedCrossRefGoogle Scholar
  113. Wang Z et al (1996) Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. J Comp Neurol 366(4):726–737PubMedCrossRefGoogle Scholar
  114. Whitnall MH et al (1985) Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5(1):98–109PubMedGoogle Scholar
  115. Xi D, Kusano K, Gainer H (1999) Quantitative analysis of oxytocin and vasopressin messenger ribonucleic acids in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology 140(10):4677–4682PubMedCrossRefGoogle Scholar
  116. Xiao M et al (2005) The distribution of neural nitric oxide synthase-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxytocin. Brain Res 1038(2):150–162CrossRefPubMedGoogle Scholar
  117. Xu L et al (2010) Oxytocin and vasopressin immunoreactive staining in the brains of Brandt’s voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton). Neuroscience 169(3):1235–1247. doi:10.1016/j.neuroscience.2010.05.064 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yang J et al (2011) Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 32(6):1255–1261PubMedCrossRefGoogle Scholar
  119. Yayou K-I, Ito S, Yamamoto N (2015) Relationships between postnatal plasma oxytocin concentrations and social behaviors in cattle. Anim Sci J 86(8):806–813PubMedCrossRefGoogle Scholar
  120. Yoshida M et al (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29(7):2259–2271PubMedCrossRefGoogle Scholar
  121. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054PubMedCrossRefGoogle Scholar
  122. Young LJ et al (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400(6746):766–768PubMedCrossRefGoogle Scholar
  123. Zoli M, Agnati LF (1996) Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 49(4):363–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marcos Otero-García
    • 2
  • Carmen Agustín-Pavón
    • 1
  • Enrique Lanuza
    • 2
  • Fernando Martínez-García
    • 1
  1. 1.Lab. of Functional Neuroanatomy (NeuroFun), Unitat Predepartamental de Medicina, Facultat de Ciències de la SalutUniversitat Jaume ICastelló de la PlanaSpain
  2. 2.Departaments de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències BiològiquesUniversitat de ValènciaValènciaSpain

Personalised recommendations