Brain Structure and Function

, Volume 221, Issue 6, pp 3275–3299 | Cite as

Structural brain aging and speech production: a surface-based brain morphometry study

Original Article

Abstract

While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa–pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

Keywords

Speech production Cortical thickness Anterior insula Aging Subcortical volume 

Notes

Acknowledgments

This study was supported by P.T.’s research grants from the “Fonds de la Recherche du Québec Société-Culture”, the Natural Sciences and Engineering Research Council of Canada (CA), the “Fonds de Recherche du Québec—Santé” (FRQS), and by start-up funds from the “Institut Universitaire en Santé Mentale de Québec” also to P.T. Technical support was provided by the “Consortium d’imagerie en neuroscience et santé mentale de Québec” (CINQ) for protocol development and MRI data acquisition. Their support is gratefully acknowledged. We thank Mylène Bilodeau-Mercure, Anne-Marie Audet and Marc Sato for their help with MRI data acquisition and behavioural data analyses.

Supplementary material

429_2015_1100_MOESM1_ESM.eps (4.1 mb)
Supplementary material S1. Distribution of errors for the young and older adults, separately for the simple and complex sequences, (A) as a function of position in the sequence (first vs. second half), (B) also as a function of position in the sequence, but for each of the six sequence positions, (C) as a function of the category of errors (exchanges, insertion and deletion. (C) more detailed analysis of error types with all 8 categories of errors. (EPS 4187 kb)
429_2015_1100_MOESM2_ESM.eps (22.8 mb)
Supplementary material S2. Mean cortical thickness maps for (A): the young adults, (B) the older adults and C: regions showing a significant age difference (Young > Older, in blue). Results are shown on the group average smoothed white matter folded surface in which dark gray regions represent sulci while pale gray areas represent gyri. (EPS 23344 kb)
429_2015_1100_MOESM3_ESM.eps (2.3 mb)
Supplementary material S3. Scatter plots illustrating the relationship between subcortical structures and complexity effects in response duration as a function of age (young adults: green dots; older adults, pink dots), in the left (top row) and right caudate nuclei (bottom row). (EPS 2360 kb)

References

  1. Ackermann H, Riecker A (2004) The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang 89(2):320–328. doi:10.1016/S0093-934X(03)00347-X PubMedCrossRefGoogle Scholar
  2. Alario FX, Chainay H, Lehericy S, Cohen L (2006) The role of the supplementary motor area (SMA) in word production. Brain Res 1076(1):129–143PubMedCrossRefGoogle Scholar
  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  4. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146PubMedCrossRefGoogle Scholar
  5. Anderson BJ, Eckburg PB, Relucio KI (2002) Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9(1):1–9. doi:10.1101/lm.43402 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935. doi:10.1016/j.neuron.2007.10.038 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99(20):13172–13177. doi:10.1073/pnas.162485599 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003) Neural activity in prefrontal cortex during copying geometrical shapes. I. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150(2):127–141. doi:10.1007/s00221-003-1416-6 PubMedGoogle Scholar
  9. Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F (2004) Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur J Neurosci 19(9):2591–2602. doi:10.1111/j.0953-816X.2004.03269.x PubMedCrossRefGoogle Scholar
  10. Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F (2005) Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci 22(12):3255–3265. doi:10.1111/j.1460-9568.2005.04517.x PubMedCrossRefGoogle Scholar
  11. Bilodeau-Mercure M, Lortie CL, Sato M, Guitton MJ, Tremblay P (2014) The neurobiology of speech perception decline in aging. Brain Struct Funct. doi:10.1007/s00429-013-0695-3 PubMedGoogle Scholar
  12. Bilodeau-Mercure M, Kirouac V, Langlois N, Ouellet C, Tremblay P (2015) Movement sequencing in normal aging: speech, oro-facial and finger movements. Age (revisions submitted) Google Scholar
  13. Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fMRI. J Cogn Neurosci 16(1):127–138. doi:10.1162/089892904322755610 PubMedCrossRefGoogle Scholar
  14. Blackmon K, Barr WB, Kuzniecky R, Dubois J, Carlson C, Quinn BT, Blumberg M, Halgren E, Hagler DJ, Mikhly M, Devinsky O, McDonald CR, Dale AM, Thesen T (2010) Phonetically irregular word pronunciation and cortical thickness in the adult brain. Neuroimage 51(4):1453–1458. doi:10.1016/j.neuroimage.2010.03.028 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boersma P, Weenink D (2011) Praat: doing phonetics by computer. 5.2.10 ednGoogle Scholar
  16. Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. Neuroimage 32(2):821–841. doi:10.1016/j.neuroimage.2006.04.173 PubMedCrossRefGoogle Scholar
  17. Bohland JW, Bullock D, Guenther FH (2010) Neural representations and mechanisms for the performance of simple speech sequences. J Cogn Neurosci 22(7):1504–1529. doi:10.1162/jocn.2009.21306 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bookheimer SY, Zeffiro TA, Blaxton TA, Gaillard PW, Theodore WH (2000) Activation of language cortex with automatic speech tasks. Neurology 55(8):1151–1157PubMedCrossRefGoogle Scholar
  19. Bramen JE, Hranilovich JA, Dahl RE, Chen J, Rosso C, Forbes EE, Dinov ID, Worthman CM, Sowell ER (2012) Sex matters during adolescence: testosterone-related cortical thickness maturation differs between boys and girls. PLoS ONE 7(3):e33850. doi:10.1371/journal.pone.0033850 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brendel B, Hertrich I, Erb M, Lindner A, Riecker A, Grodd W, Ackermann H (2010) The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: an fMRI study. Neuroimage 50(3):1219–1230. doi:10.1016/j.neuroimage.2010.01.039 PubMedCrossRefGoogle Scholar
  21. Brendel B, Erb M, Riecker A, Grodd W, Ackermann H, Ziegler W (2011) Do we have a “mental syllabary” in the brain? An FMRI study. Mot Control 15(1):34–51Google Scholar
  22. Brenhouse HC, Andersen SL (2011) Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 35(8):1687–1703. doi:10.1016/j.neubiorev.2011.04.013 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Burggren AC, Renner B, Jones M, Donix M, Suthana NA, Martin-Harris L, Ercoli LM, Miller KJ, Siddarth P, Small GW, Bookheimer SY (2011) Thickness in entorhinal and subicular cortex predicts episodic memory decline in mild cognitive impairment. Int J Alzheimer’s Dis 2011:956053. doi:10.4061/2011/956053 Google Scholar
  24. Bybee J (2002) Phonological evidence for exemplar storage of multiword sequences. Studies Second Lang Acquis 24:215–221CrossRefGoogle Scholar
  25. Bybee J, Scheibman J (1999) The effect of usage on degree of constituency: the reduction of don’t in American English. Linguistics 37:575–596CrossRefGoogle Scholar
  26. Calhoun KH, Gibson B, Hartley L, Minton J, Hokanson JA (1992) Age-related changes in oral sensation. Laryngoscope 102(2):109–116. doi:10.1288/00005537-199202000-00001 PubMedCrossRefGoogle Scholar
  27. Carriere JS, Cheyne JA, Solman GJ, Smilek D (2010) Age trends for failures of sustained attention. Psychol Aging 25(3):569–574. doi:10.1037/a0019363 PubMedCrossRefGoogle Scholar
  28. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33(2):430–448PubMedCrossRefGoogle Scholar
  29. Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495. doi:10.1007/s00429-008-0195-z PubMedCrossRefGoogle Scholar
  30. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50(3):1148–1167. doi:10.1016/j.neuroimage.2009.12.112 PubMedCrossRefGoogle Scholar
  31. Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58(2):362–380. doi:10.1016/j.neuroimage.2011.06.027 PubMedCrossRefGoogle Scholar
  32. Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013a) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628PubMedCrossRefGoogle Scholar
  33. Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013b) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23(3):615–628. doi:10.1093/cercor/bhs048 PubMedCrossRefGoogle Scholar
  34. Chang LJ, Yarkoni T, Khaw MW, Sanfey AG (2013) Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb Cortex 23(3):739–749. doi:10.1093/cercor/bhs065 PubMedCrossRefGoogle Scholar
  35. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176PubMedCrossRefGoogle Scholar
  36. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194. doi:10.1006/nimg.1998.0395 PubMedCrossRefGoogle Scholar
  37. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8):1856–1864. doi:10.1093/cercor/bhm207 PubMedCrossRefGoogle Scholar
  38. de Brabander JM, Kramers RJ, Uylings HB (1998) Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur J Neurosci 10(4):1261–1269PubMedCrossRefGoogle Scholar
  39. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, De Santi S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18(1):1–11PubMedCrossRefGoogle Scholar
  40. Deschamps I, Baum SR, Gracco VL (2014) On the role of the supramarginal gyrus in phonological processing and verbal working memory: evidence from rTMS studies. Neuropsychologia 53:39–46. doi:10.1016/j.neuropsychologia.2013.10.015 PubMedCrossRefGoogle Scholar
  41. Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, Pacheco J, Quinn BT, Van der Kouwe A, Greve DN, Blacker D, Albert MS, Killiany RJ, Fischl B (2008) Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage 39(1):10–18. doi:10.1016/j.neuroimage.2007.08.042 PubMedCrossRefGoogle Scholar
  42. Diggles Buckles V (1993) Age-related slowing. In: Netherlands S (ed) Sensorimotor impairment in the elderly, vol 75. NATO ASI Series, pp 73–87. doi:10.1007/978-94-011-1976-4_6
  43. Doose G, Feyereisen P (2001) Task specificity in age-related slowing: word production versus conceptual comparison. J Gerontol Ser B Psychol Sci Soc Sci 56(2):P85–87CrossRefGoogle Scholar
  44. Dromey C, Boyce K, Channell R (2014) Effects of age and syntactic complexity on speech motor performance. J Speech Lang Hear Res 57(6):2142–2151. doi:10.1044/2014_JSLHR-S-13-0327 PubMedCrossRefGoogle Scholar
  45. Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384(6605):159–161. doi:10.1038/384159a0 PubMedCrossRefGoogle Scholar
  46. Duchin SW, Mysak ED (1987) Disfluency and rate characteristics of young adult, middle-aged, and older males. J Commun Disord 20(3):245–257PubMedCrossRefGoogle Scholar
  47. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. Neuroimage 52(4):1667–1676. doi:10.1016/j.neuroimage.2010.05.041 PubMedCrossRefGoogle Scholar
  48. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055. doi:10.1073/pnas.200033797 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2):195–207PubMedCrossRefGoogle Scholar
  50. Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284PubMedCrossRefGoogle Scholar
  51. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80PubMedCrossRefGoogle Scholar
  52. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355PubMedCrossRefGoogle Scholar
  53. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22. doi:10.1093/cercor/bhg087 PubMedCrossRefGoogle Scholar
  54. Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21(3):187–221PubMedCrossRefGoogle Scholar
  55. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009a) One-year brain atrophy evident in healthy aging. J Neurosci 29(48):15223–15231. doi:10.1523/JNEUROSCI.3252-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009b) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19(9):2001–2012. doi:10.1093/cercor/bhn232 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fozo MS, Watson BC (1998) Task complexity effect on vocal reaction time in aged speakers. J Voice 12(4):404–414PubMedCrossRefGoogle Scholar
  58. Gamboz N, Zamarian S, Cavallero C (2010) Age-related differences in the attention network test (ANT). Exp Aging Res 36(3):287–305. doi:10.1080/0361073X.2010.484729 PubMedCrossRefGoogle Scholar
  59. Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120(Pt 9):1587–1602PubMedCrossRefGoogle Scholar
  60. Ghosh SS, Tourville JA, Guenther FH (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. J Speech Lang Hear Res 51(5):1183–1202. doi:10.1044/1092-4388(2008/07-0119) PubMedPubMedCentralCrossRefGoogle Scholar
  61. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863. doi:10.1038/13158 PubMedCrossRefGoogle Scholar
  62. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci 101(21):8174–8179PubMedPubMedCentralCrossRefGoogle Scholar
  63. Golestani N, Paus T, Zatorre RJ (2002) Anatomical correlates of learning novel speech sounds. Neuron 35(5):997–1010PubMedCrossRefGoogle Scholar
  64. Golestani N, Molko N, Dehaene S, LeBihan D, Pallier C (2007) Brain structure predicts the learning of foreign speech sounds. Cereb Cortex 17(3):575–582. doi:10.1093/cercor/bhk001 PubMedCrossRefGoogle Scholar
  65. Golfinopoulos E, Tourville JA, Guenther FH (2010) The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Neuroimage 52(3):862–874PubMedCrossRefGoogle Scholar
  66. Grogan A, Green DW, Ali N, Crinion JT, Price CJ (2009) Structural correlates of semantic and phonemic fluency ability in first and second languages. Cereb Cortex 19(11):2690–2698. doi:10.1093/cercor/bhp023 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Guenther FH (1995) Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychol Rev 102(3):594–621PubMedCrossRefGoogle Scholar
  68. Guenther FH (2006) Cortical interactions underlying the production of speech sounds. J Commun Disord 39(5):350–365. doi:10.1016/j.jcomdis.2006.06.013 PubMedCrossRefGoogle Scholar
  69. Guenther FH, Hampson M, Johnson D (1998) A theoretical investigation of reference frames for the planning of speech movements. Psychol Rev 105(4):611–633PubMedCrossRefGoogle Scholar
  70. Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96(3):280–301PubMedCrossRefGoogle Scholar
  71. Hafkemeijer A, Altmann-Schneider I, de Craen AJ, Slagboom PE, van der Grond J, Rombouts SA (2014) Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell 13(6):1068–1074. doi:10.1111/acel.12271 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Haller S, Radue EW, Erb M, Grodd W, Kircher T (2005) Overt sentence production in event-related fMRI. Neuropsychologia 43(5):807–814PubMedCrossRefGoogle Scholar
  73. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1):180–194. doi:10.1016/j.neuroimage.2006.02.051 PubMedCrossRefGoogle Scholar
  74. Henson RN, Shallice T, Dolan RJ (1999) Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain 122(Pt 7):1367–1381PubMedCrossRefGoogle Scholar
  75. Hickok G (2012) Computational neuroanatomy of speech production. Nat Rev Neurosci 13(2):135–145. doi:10.1038/nrn3158 PubMedCrossRefGoogle Scholar
  76. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19(4):1446–1463PubMedGoogle Scholar
  77. Huettel SA, Mack PB, McCarthy G (2002) Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex. Nat Neurosci 5(5):485–490. doi:10.1038/nn841 PubMedGoogle Scholar
  78. Huttenlocher PR (1979) Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res 163:195–205PubMedCrossRefGoogle Scholar
  79. Jacobs B, Scheibel AB (1993) A quantitative dendritic analysis of Wernicke’s area in humans. I. Lifespan changes. J Comp Neurol 327(1):83–96. doi:10.1002/cne.903270107 PubMedCrossRefGoogle Scholar
  80. Jennings JM, Dagenbach D, Engle CM, Funke LJ (2007) Age-related changes and the attention network task: an examination of alerting, orienting, and executive function. Neuropsychol Dev Cogn Sect B Aging Neuropsychol Cogn 14(4):353–369. doi:10.1080/13825580600788837 CrossRefGoogle Scholar
  81. Kennedy KM, Raz N (2005) Age, sex and regional brain volumes predict perceptual-motor skill acquisition. Cortex 41(4):560–569PubMedCrossRefGoogle Scholar
  82. Kent RD (2000) Research on speech motor control and its disorders: a review and prospective. J Commun Disord 33(5):391–427 (quiz 428). pii: S0021-9924(00)00023-XGoogle Scholar
  83. Kent RD, Kent JF, Rosenbek JC (1987) Maximum performance tests of speech production. J Speech Hear Disord 52(4):367–387PubMedCrossRefGoogle Scholar
  84. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888PubMedCrossRefGoogle Scholar
  85. Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, New York, pp 112–131Google Scholar
  86. Lewis PA, Miall RC (2002) Brain activity during non-automatic motor production of discrete multi-second intervals. NeuroReport 13(14):1731–1735PubMedCrossRefGoogle Scholar
  87. Li Y, Li C, Wu Q, Xu Z, Kurata T, Ohno S, Kanazawa S, Abe K, Wu J (2015) Decreased resting-state connections within the visuospatial attention-related network in advanced aging. Neurosci Lett 597:13–18. doi:10.1016/j.neulet.2015.03.047 PubMedCrossRefGoogle Scholar
  88. Lotze M, Seggewies G, Erb M, Grodd W, Birbaumer N (2000) The representation of articulation in the primary sensorimotor cortex. NeuroReport 11(13):2985–2989PubMedCrossRefGoogle Scholar
  89. Lovden M, Schmiedek F, Kennedy KM, Rodrigue KM, Lindenberger U, Raz N (2013) Does variability in cognitive performance correlate with frontal brain volume? Neuroimage 64:209–215. doi:10.1016/j.neuroimage.2012.09.039 PubMedCrossRefGoogle Scholar
  90. Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142(4):475–485. doi:10.1007/s00221-001-0953-0 PubMedCrossRefGoogle Scholar
  91. Magnaldi S, Ukmar M, Vasciaveo A, Longo R, Pozzi-Mucelli RS (1993) Contrast between white and grey matter: MRI appearance with ageing. Eur Radiol 3(6):513–519. doi:10.1007/BF00169600 CrossRefGoogle Scholar
  92. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48(2):99–109PubMedCrossRefGoogle Scholar
  93. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298PubMedCrossRefGoogle Scholar
  94. Mechelli A, Crinion JT, Noppeney U, O’Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004) Neurolinguistics: structural plasticity in the bilingual brain. Nature 431(7010):757. doi:10.1038/431757a PubMedCrossRefGoogle Scholar
  95. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667. doi:10.1007/s00429-010-0262-0 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Menon V, Anagnoson RT, Glover GH, Pfefferbaum A (2000) Basal ganglia involvement in memory-guided movement sequencing. NeuroReport 11(16):3641–3645PubMedCrossRefGoogle Scholar
  97. Montembeault M, Joubert S, Doyon J, Carrier J, Gagnon JF, Monchi O, Lungu O, Belleville S, Brambati SM (2012) The impact of aging on gray matter structural covariance networks. Neuroimage 63(2):754–759. doi:10.1016/j.neuroimage.2012.06.052 PubMedCrossRefGoogle Scholar
  98. Morris R, Brown WS (1987) Age-related voice measures among adult women. J Voice 1(1):43CrossRefGoogle Scholar
  99. Moser D, Fridriksson J, Bonilha L, Healy EW, Baylis G, Baker JM, Rorden C (2009) Neural recruitment for the production of native and novel speech sounds. Neuroimage 46(2):549–557PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nakamura S, Akiguchi I, Kameyama M, Mizuno N (1985) Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol 65(3–4):281–284PubMedCrossRefGoogle Scholar
  101. Nasreddine ZS, Chertkow H, Phillips N, Bergman H, Whitehead V (2003) Sensitivity and specificity of the Montreal cognitive assessment (MoCA) for detection of mild cognitive deficits. Can J Neurol Sci 30(30)Google Scholar
  102. Neel AT, Palmer PM (2012) Is tongue strength an important influence on rate of articulation in diadochokinetic and reading tasks? J Speech Lang Hear Res 55(1):235–246. doi:10.1044/1092-4388(2011/10-0258) PubMedCrossRefGoogle Scholar
  103. Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214(5–6):669–680. doi:10.1007/s00429-010-0260-2 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Neta M, Schlaggar BL, Petersen SE (2014) Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. Neuroimage 99:59–68. doi:10.1016/j.neuroimage.2014.05.053 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Obler LK, Rykhlevskaia E, Schnyer D, Clark-Cotton MR, Spiro A 3rd, Hyun J, Kim DS, Goral M, Albert ML (2010) Bilateral brain regions associated with naming in older adults. Brain Lang 113(3):113–123. doi:10.1016/j.bandl.2010.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ogar J, Willock S, Baldo J, Wilkins D, Ludy C, Dronkers N (2006) Clinical and anatomical correlates of apraxia of speech. Brain Lang 97(3):343–350. doi:10.1016/j.bandl.2006.01.008 PubMedCrossRefGoogle Scholar
  107. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRefGoogle Scholar
  108. Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7(1):75–79PubMedCrossRefGoogle Scholar
  109. Peelle JE, Troiani V, Wingfield A, Grossman M (2010) Neural processing during older adults’ comprehension of spoken sentences: age differences in resource allocation and connectivity. Cereb Cortex 20(4):773–782. doi:10.1093/cercor/bhp142 PubMedCrossRefGoogle Scholar
  110. Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, Alario FX (2010) Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage 50(2):626–638. doi:10.1016/j.neuroimage.2009.12.065 PubMedCrossRefGoogle Scholar
  111. Peschke C, Ziegler W, Kappes J, Baumgaertner A (2009) Auditory-motor integration during fast repetition: the neuronal correlates of shadowing. Neuroimage 47(1):392–402. doi:10.1016/j.neuroimage.2009.03.061 PubMedCrossRefGoogle Scholar
  112. Pessoa L, Gutierrez E, Bandettini P, Ungerleider L (2002) Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35(5):975–987PubMedCrossRefGoogle Scholar
  113. Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360(1456):781–795. doi:10.1098/rstb.2005.1631 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Porter JN, Collins PF, Muetzel RL, Lim KO, Luciana M (2011) Associations between cortical thickness and verbal fluency in childhood, adolescence, and young adulthood. Neuroimage 55(4):1865–1877. doi:10.1016/j.neuroimage.2011.01.018 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16(10):1508–1521. doi:10.1093/cercor/bhj088 PubMedCrossRefGoogle Scholar
  116. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi:10.1073/pnas.98.2.676 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176PubMedCrossRefGoogle Scholar
  118. Riecker A, Wildgruber D, Dogil G, Grodd W, Ackermann H (2002) Hemispheric lateralization effects of rhythm implementation during syllable repetitions: an fMRI study. Neuroimage 16:169–176PubMedCrossRefGoogle Scholar
  119. Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64:700–706PubMedCrossRefGoogle Scholar
  120. Riecker A, Brendel B, Ziegler W, Erb M, Ackermann H (2008) The influence of syllable onset complexity and syllable frequency on speech motor control. Brain Lang 107(2):102–113PubMedCrossRefGoogle Scholar
  121. Roehrich-Gascon D, Small SL, Tremblay P (2015) Structural correlates of spoken language abilities: a surface-based region-of interest morphometry study. Brain Lang 149:46–54PubMedCrossRefGoogle Scholar
  122. Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5):695–701PubMedCrossRefGoogle Scholar
  123. Ryan WJ, Burk KW (1974) Perceptual and acoustic correlates of aging in the speech of males. J Commun Disord 7(2):181–192PubMedCrossRefGoogle Scholar
  124. Saad ZS, Reynolds RC (2012) Suma. Neuroimage 62(2):768–773. doi:10.1016/j.neuroimage.2011.09.016 PubMedCrossRefGoogle Scholar
  125. Sadagopan N, Smith A (2013) Age differences in speech motor performance on a novel speech task. J Speech Lang Hear Res 56(5):1552–1566. doi:10.1044/1092-4388(2013/12-0293) PubMedCrossRefGoogle Scholar
  126. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730PubMedCrossRefGoogle Scholar
  127. Salat DH, Lee SY, Van Der Kouwe A, Greve DN, Fischl B, Rosas HD (2009) Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage 48(1):21–28PubMedPubMedCentralCrossRefGoogle Scholar
  128. Satz P (1993) Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology 7(3):273–295CrossRefGoogle Scholar
  129. Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB (1975) Progressive dendritic changes in aging human cortex. Exp Neurol 47(3):392–403PubMedCrossRefGoogle Scholar
  130. Searl JP, Gabel RM, Fulks JS (2002) Speech disfluency in centenarians. J Commun Disord 35(5):383–392PubMedCrossRefGoogle Scholar
  131. Sebastián-Gallés N, Soriano-Mas C, Baus C, Díaz B, Ressel V, Pallier C, Costa A, Pujol J (2012) Neuroanatomical markers of individual differences in native and non-native vowel perception. J Neurolinguist 25(3):150–162. doi:10.1016/j.jneuroling.2011.11.001 CrossRefGoogle Scholar
  132. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075PubMedCrossRefGoogle Scholar
  134. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529PubMedCrossRefGoogle Scholar
  135. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–733. doi:10.1016/j.neubiorev.2009.10.005 PubMedCrossRefGoogle Scholar
  136. Shafto MA, Burke DM, Stamatakis EA, Tam PP, Tyler LK (2007) On the tip-of-the-tongue: neural correlates of increased word-finding failures in normal aging. J Cogn Neurosci 19(12):2060–2070. doi:10.1162/jocn.2007.19.12.2060 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Shalom DB, Poeppel D (2008) Functional anatomic models of language: assembling the pieces. Neuroscientist 14(1):119–127. doi:10.1177/1073858407305726 PubMedCrossRefGoogle Scholar
  138. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663. doi:10.1162/jocn.1997.9.5.648 PubMedCrossRefGoogle Scholar
  139. Shuster LI (2009) The effect of sublexical and lexical frequency on speech production: an fMRI investigation. Brain Lang 111(1):66–72. doi:10.1016/j.bandl.2009.06.003 PubMedCrossRefGoogle Scholar
  140. Shuster LI, Lemieux SK (2005) An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain Lang 93(1):20–31PubMedCrossRefGoogle Scholar
  141. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97PubMedCrossRefGoogle Scholar
  142. Smith BL, Wasowicz J, Preston J (1987) Temporal characteristics of the speech of normal elderly adults. J Speech Hear Res 30(4):522–529PubMedCrossRefGoogle Scholar
  143. Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V (2014) Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect 4(9):662–676. doi:10.1089/brain.2014.0286 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Soros P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT (2006) Clustered functional MRI of overt speech production. Neuroimage 32(1):376–387. doi:10.1016/j.neuroimage.2006.02.046 PubMedCrossRefGoogle Scholar
  145. Steffener J (1822) Stern Y (2012) Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta 3:467–473. doi:10.1016/j.bbadis.2011.09.012 Google Scholar
  146. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460PubMedCrossRefGoogle Scholar
  147. Stern Y (2003) The concept of cognitive reserve: a catalyst for research. J Clin Exp Neuropsychol 25(5):589–593. doi:10.1076/jcen.25.5.589.14571 PubMedCrossRefGoogle Scholar
  148. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB (2014) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34(25):8488–8498. doi:10.1523/JNEUROSCI.0391-14.2014 PubMedCrossRefGoogle Scholar
  149. Tan LH, Spinks JA, Gao JH, Liu HL, Perfetti CA, Xiong J, Stofer KA, Pu Y, Liu Y, Fox PT (2000) Brain activation in the processing of Chinese characters and words: a functional MRI study. Hum Brain Mapp 10(1):16–27PubMedCrossRefGoogle Scholar
  150. Van Petten C, Plante E, Davidson PS, Kuo TY, Bajuscak L, Glisky EL (2004) Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsychologia 42(10):1313–1335. doi:10.1016/j.neuropsychologia.2004.02.009 PubMedCrossRefGoogle Scholar
  151. van Velsen EF, Vernooij MW, Vrooman HA, van der Lugt A, Breteler MM, Hofman A, Niessen WJ, Ikram MA (2013) Brain cortical thickness in the general elderly population: the Rotterdam Scan Study. Neurosci Lett 550:189–194. doi:10.1016/j.neulet.2013.06.063 PubMedCrossRefGoogle Scholar
  152. Vingerhoets G, Van Borsel J, Tesink C, van den Noort M, Deblaere K, Seurinck R, Vandemaele P, Achten E (2003) Multilingualism: an fMRI study. Neuroimage 20(4):2181–2196PubMedCrossRefGoogle Scholar
  153. Wang L, Su L, Shen H, Hu D (2012) Decoding lifespan changes of the human brain using resting-state functional connectivity MRI. PLoS ONE 7(8):e44530. doi:10.1371/journal.pone.0044530 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wei G, Zhang Y, Jiang T, Luo J (2011) Increased cortical thickness in sports experts: a comparison of diving players with the controls. PLoS ONE 6(2):e17112. doi:10.1371/journal.pone.0017112 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wilde EA, Newsome MR, Bigler ED, Pertab J, Merkley TL, Hanten G, Scheibel RS, Li X, Chu Z, Yallampalli R, Hunter JV, Levin HS (2011) Brain imaging correlates of verbal working memory in children following traumatic brain injury. Int J Psychophysiol 82(1):86–96. doi:10.1016/j.ijpsycho.2011.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wohlert AB (1996) Tactile perception of spatial stimuli on the lip surface by young and older adults. J Speech Hear Res 39(6):1191–1198PubMedCrossRefGoogle Scholar
  157. Wohlert AB, Smith A (1998) Spatiotemporal stability of lip movements in older adult speakers. J Speech Lang Hear Res 41(1):41–50PubMedCrossRefGoogle Scholar
  158. Wong PC, Warrier CM, Penhune VB, Roy AK, Sadehh A, Parrish TB, Zatorre RJ (2008) Volume of left Heschl’s Gyrus and linguistic pitch learning. Cereb Cortex 18(4):828–836. doi:10.1093/cercor/bhm115 PubMedCrossRefGoogle Scholar
  159. Wong PC, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31(4):471–479. doi:10.1097/AUD.0b013e3181d709c2 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tremblay P, Sato M, Deschamps I (2015) The neurofunctional underpinning of sub-lexical speech production in aging. NeuroImage (submitted) Google Scholar
  161. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49PubMedCrossRefGoogle Scholar
  162. Zhang H, Sachdev PS, Wen W, Kochan NA, Crawford JD, Brodaty H, Slavin MJ, Reppermund S, Kang K, Trollor JN (2013) Grey matter correlates of three language tests in non-demented older adults. PLoS ONE 8(11):e80215. doi:10.1371/journal.pone.0080215 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhou SS, Fan J, Lee TM, Wang CQ, Wang K (2011) Age-related differences in attentional networks of alerting and executive control in young, middle-aged, and older Chinese adults. Brain Cogn 75(2):205–210. doi:10.1016/j.bandc.2010.12.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre de Recherche de l’Institut Universitaire en Santé Mentale de QuébecQuebecCanada
  2. 2.Département de Réadaptation, Faculté de MédecineUniversité LavalQuebecCanada
  3. 3.Département de RehabilitationUniversité LavalQuebecCanada

Personalised recommendations