Brain Structure and Function

, Volume 221, Issue 6, pp 3237–3258 | Cite as

Large-scale intrinsic functional network organization along the long axis of the human medial temporal lobe

  • Shaozheng QinEmail author
  • Xujun Duan
  • Kaustubh Supekar
  • Huafu Chen
  • Tianwen Chen
  • Vinod MenonEmail author
Original Article


The medial temporal lobe (MTL), encompassing the hippocampus and parahippocampal gyrus (PHG), is a heterogeneous structure which plays a critical role in memory and cognition. Here, we investigate functional architecture of the human MTL along the long axis of the hippocampus and PHG. The hippocampus showed stronger connectivity with striatum, ventral tegmental area and amygdala—regions important for integrating reward and affective signals, whereas the PHG showed stronger connectivity with unimodal and polymodal association cortices. In the hippocampus, the anterior node showed stronger connectivity with the anterior medial temporal lobe and the posterior node showed stronger connectivity with widely distributed cortical and subcortical regions including those involved in sensory and reward processing. In the PHG, differences were characterized by a gradient of increasing anterior-to-posterior connectivity with core nodes of the default mode network. Left and right MTL connectivity patterns were remarkably similar, except for stronger left than right MTL connectivity with regions in the left MTL, the ventral striatum and default mode network. Graph theoretical analysis of MTL-based networks revealed higher node centrality of the posterior, compared to anterior and middle hippocampus. The PHG showed prominent gradients in both node degree and centrality along its anterior-to-posterior axis. Our findings highlight several novel aspects of functional heterogeneity in connectivity along the long axis of the human MTL and provide new insights into how its network organization supports integration and segregation of signals from distributed brain areas. The implications of our findings for a principledunderstanding of distributed pathways that support memory and cognition are discussed.


Medial temporal lobe Hippocampus Connectivity Network fMRI Memory 



This work was supported by the National Institutes of Health (HD047520, HD059205 and K99MH105601), the Netherlands Organization for Scientific Research (NWO 446.10.010), the Child Health Research Institute (CHRI) at Stanford University and Lucile Packard Foundation for Children’s Health and the Stanford CTAS (UL1RR025744), and the Natural Science Foundation of China (61035006 and 61125304). We declare that there are no conflicts of interest.

Supplementary material

429_2015_1098_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (DOCX 1296 kb)


  1. Aminoff E, Gronau N, Bar M (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17(7):1493–1503. doi: 10.1093/cercor/bhl078 PubMedCrossRefGoogle Scholar
  2. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17(8):379–390. doi: 10.1016/j.tics.2013.06.009S1364-6613(13)00142-3 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional–anatomic fractionation of the brain’s default network. Neuron 65(4):550–562. doi: 10.1016/j.neuron.2010.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science (New York, NY) 319(5870):1640–1642CrossRefGoogle Scholar
  5. Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of deja vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain 117(Pt 1):71–90PubMedCrossRefGoogle Scholar
  6. Bar M (2004) Visual objects in context. Nat Rev 5(8):617–629CrossRefGoogle Scholar
  7. Bar M, Aminoff E, Ishai A (2008a) Famous faces activate contextual associations in the parahippocampal cortex. Cereb Cortex 18(6):1233–1238. doi: 10.1093/cercor/bhm170 PubMedCrossRefGoogle Scholar
  8. Bar M, Aminoff E, Schacter DL (2008b) Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J Neurosci 28(34):8539–8544. doi: 10.1523/JNEUROSCI.0987-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi: 10.1177/1073858406293182 PubMedCrossRefGoogle Scholar
  10. Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9(3):182–194. doi: 10.1038/nrn2335 PubMedCrossRefGoogle Scholar
  11. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541PubMedCrossRefGoogle Scholar
  12. Bolland JM (1988) Sorting out centrality—an analysis of the performance of 4 centrality models in real and simulated networks. Soc Netw 10(3):233–253. doi: 10.1016/0378-8733(88)90014-7 CrossRefGoogle Scholar
  13. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290. doi: 10.1016/j.tics.2010.04.004 PubMedCrossRefGoogle Scholar
  14. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57. doi: 10.1016/j.tics.2006.11.004 PubMedCrossRefGoogle Scholar
  15. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi: 10.1196/annals.1440.011 PubMedCrossRefGoogle Scholar
  16. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev 10(3):186–198. doi: 10.1038/nrn2575 CrossRefGoogle Scholar
  17. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev 13(5):336–349. doi: 10.1038/nrn3214 Google Scholar
  18. Burwell RD (2000) The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci 911:25–42PubMedCrossRefGoogle Scholar
  19. Buzsaki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6(2):81–92PubMedCrossRefGoogle Scholar
  20. Cabeza R, St Jacques P (2007) Functional neuroimaging of autobiographical memory. Trends Cogn Sci 11(5):219–227. doi: 10.1016/j.tics.2007.02.005 PubMedCrossRefGoogle Scholar
  21. Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008) The parietal cortex and episodic memory: an attentional account. Nat Rev 9(8):613–625. doi: 10.1038/nrn2459 CrossRefGoogle Scholar
  22. Chabardes S, Kahane P, Minotti L, Hoffmann D, Benabid AL (2002) Anatomy of the temporal pole region. Epileptic Disord 4(Suppl 1):S9–S15PubMedGoogle Scholar
  23. Cooper BG, Manka TF, Mizumori SJ (2001) Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav Neurosci 115(5):1012–1028PubMedCrossRefGoogle Scholar
  24. Courtney SM, Petit L, Haxby JV, Ungerleider LG (1998) The role of prefrontal cortex in working memory: examining the contents of consciousness. Philos Trans R Soc Lond B Biol Sci 353(1377):1819–1828. doi: 10.1098/rstb.1998.0334 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Daunizeau J, Kiebel SJ, Friston KJ (2009) Dynamic causal modelling of distributed electromagnetic responses. Neuroimage 47(2):590–601. doi: 10.1016/j.neuroimage.2009.04.062 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693–700PubMedCrossRefGoogle Scholar
  27. Davachi L, Mitchell JP, Wagner AD (2003) Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci USA 100(4):2157–2162. doi: 10.1073/pnas.03371951000337195100 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Delgado MR, Dickerson KC (2012) Reward-related learning via multiple memory systems. Biol Psychiatry 72(2):134–141PubMedPubMedCentralCrossRefGoogle Scholar
  29. Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18(12):2735–2747. doi: 10.1093/cercor/bhn041 PubMedCrossRefGoogle Scholar
  30. Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, Craddock RC, Luna B, Leventhal BL, Zuo XN, Milham MP (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83(6):1335–1353. doi: 10.1016/j.neuron.2014.08.050 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diana RA, Ranganath C (2011) Recollection, familiarity and memory strength: confusion about confounds. Trends Cogn Sci 15(8):337–338. doi: 10.1016/j.tics.2011.06.001 PubMedCrossRefGoogle Scholar
  32. Diana RA, Yonelinas AP, Ranganath C (2007) Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci 11(9):379–386PubMedCrossRefGoogle Scholar
  33. Dickerson KC, Li J, Delgado MR (2011) Parallel contributions of distinct human memory systems during probabilistic learning. Neuroimage 55(1):266–276PubMedCrossRefGoogle Scholar
  34. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci USA 105(15):5915–5920. doi: 10.1073/pnas.0801489105 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dolcos F, LaBar KS, Cabeza R (2005) Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc Natl Acad Sci USA 102(7):2626–2631. doi: 10.1073/pnas.0409848102 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152PubMedPubMedCentralCrossRefGoogle Scholar
  37. Engelien A, Stern E, Isenberg N, Engelien W, Frith C, Silbersweig D (2000) The parahippocampal region and auditory–mnemonic processing. Ann N Y Acad Sci 911:477–485PubMedCrossRefGoogle Scholar
  38. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12(10):388–396. doi: 10.1016/j.tics.2008.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19. doi: 10.1016/j.neuron.2009.11.031 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fernandez G, Tendolkar I (2006) The rhinal cortex: ‘gatekeeper’ of the declarative memory system. Trends Cogn Sci 10(8):358–362PubMedCrossRefGoogle Scholar
  41. Fernandez G, Weyerts H, Schrader-Bolsche M, Tendolkar I, Smid HG, Tempelmann C, Hinrichs H, Scheich H, Elger CE, Mangun GR, Heinze HJ (1998) Successful verbal encoding into episodic memory engages the posterior hippocampus: a parametrically analyzed functional magnetic resonance imaging study. J Neurosci 18(5):1841–1847PubMedGoogle Scholar
  42. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev 8(9):700–711. doi: 10.1038/nrn2201 CrossRefGoogle Scholar
  43. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051. doi: 10.1073/pnas.0604187103 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science (New York, NY) 304(5672):881–883. doi: 10.1126/science.1094804304/5672/881 CrossRefGoogle Scholar
  45. Gallagher M, Chiba AA (1996) The amygdala and emotion. Curr Opin Neurobiol 6(2):221–227PubMedCrossRefGoogle Scholar
  46. Glosser G, Salvucci AE, Chiaravalloti ND (2003) Naming and recognizing famous faces in temporal lobe epilepsy. Neurology 61(1):81–86PubMedCrossRefGoogle Scholar
  47. Glover GH (2012) Spiral imaging in fMRI. Neuroimage 62(2):706–712. doi: 10.1016/j.neuroimage.2011.10.039 PubMedCrossRefGoogle Scholar
  48. Glover GH, Lai S (1998) Self-navigated spiral fMRI: interleaved vs. single-shot. Magn Reson Med 39(3):361–368PubMedCrossRefGoogle Scholar
  49. Glover GH, Law CS (2001) Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 46(3):515–522. doi: 10.1002/mrm.1222 PubMedCrossRefGoogle Scholar
  50. Glover GH, Thomason ME (2004) Improved combination of spiral-in/out images for BOLD fMRI. Magn Reson Med 51(4):863–868. doi: 10.1002/mrm.20016 PubMedCrossRefGoogle Scholar
  51. Golby AJ, Poldrack RA, Brewer JB, Spencer D, Desmond JE, Aron AP, Gabrieli JD (2001) Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain 124(Pt 9):1841–1854PubMedCrossRefGoogle Scholar
  52. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12(3):719–743PubMedCrossRefGoogle Scholar
  53. Gorno-Tempini ML, Price CJ (2001) Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain 124(Pt 10):2087–2097PubMedCrossRefGoogle Scholar
  54. Gorno-Tempini ML, Price CJ, Josephs O, Vandenberghe R, Cappa SF, Kapur N, Frackowiak RS (1998) The neural systems sustaining face and proper-name processing. Brain 121(Pt 11):2103–2118PubMedCrossRefGoogle Scholar
  55. Granziera C, Hadjikhani N, Arzy S, Seeck M, Meuli R, Krueger G (2011) In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans. Neuroreport 22(5):227–231. doi: 10.1097/WNR.0b013e328344f75f PubMedCrossRefGoogle Scholar
  56. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258. doi: 10.1073/pnas.01350581000135058100 PubMedCrossRefGoogle Scholar
  57. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642. doi: 10.1073/pnas.03086271010308627101 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78. doi: 10.1093/cercor/bhn059bhn059 PubMedCrossRefGoogle Scholar
  59. Hackert VH, den Heijer T, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MM (2002) Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 7(3):1365–1372. doi: 10.1006/nimg.2002.1248 CrossRefGoogle Scholar
  60. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15(4):247–262. doi: 10.1002/hbm.10022 PubMedCrossRefGoogle Scholar
  61. Harker KT, Whishaw IQ (2004) Impaired place navigation in place and matching-to-place swimming pool tasks follows both retrosplenial cortex lesions and cingulum bundle lesions in rats. Hippocampus 14(2):224–231. doi: 10.1002/hipo.10159 PubMedCrossRefGoogle Scholar
  62. Hayasaka S, Phan KL, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary cluster-size inference with random field and permutation methods. Neuroimage 22(2):676–687. doi: 10.1016/j.neuroimage.2004.01.041S1053811904000862 PubMedCrossRefGoogle Scholar
  63. Heil M, Rosler F, Hennighausen E (1996) Topographically distinct cortical activation in episodic long-term memory: the retrieval of spatial vs. verbal information. Mem Cogn 24(6):777–795CrossRefGoogle Scholar
  64. Henke K, Weber B, Kneifel S, Wieser HG, Buck A (1999) Human hippocampus associates information in memory. Proc Natl Acad Sci USA 96(10):5884–5889PubMedPubMedCentralCrossRefGoogle Scholar
  65. Henson RN, Rugg MD, Shallice T, Dolan RJ (2000) Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J Cogn Neurosci 12(6):913–923PubMedCrossRefGoogle Scholar
  66. Hua S, Reich SG, Zirh AT, Perry V, Dougherty PM, Lenz FA (1998) The role of the thalamus and basal ganglia in parkinsonian tremor. Mov Disord 13(Suppl 3):40–42PubMedGoogle Scholar
  67. Iglói K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N (2010) Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci USA 107(32):14466–14471PubMedPubMedCentralCrossRefGoogle Scholar
  68. Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19(4):659–671PubMedGoogle Scholar
  69. Kahn I, Shohamy D (2013) Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus 23(3):187–192. doi: 10.1002/hipo.22077 PubMedCrossRefGoogle Scholar
  70. Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100(1):129–139. doi: 10.1152/jn.00077.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I (2003) Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science (New York, NY) 300(5621):990–994. doi: 10.1126/science.1082609 CrossRefGoogle Scholar
  72. Kensinger EA, Corkin S (2004) Two routes to emotional memory: distinct neural processes for valence and arousal. Proc Natl Acad Sci USA 101(9):3310–3315. doi: 10.1073/pnas.03064081010306408101 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kirwan CB, Stark CE (2004) Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus 14(7):919–930. doi: 10.1002/hipo.20014 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y (2000) Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419(2):205–222. doi: 10.1002/(SICI)1096-9861(20000403)419:2<205:AID-CNE5>3.0.CO;2-0 PubMedCrossRefGoogle Scholar
  75. Kishi T, Tsumori T, Yokota S, Yasui Y (2006) Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol 496(3):349–368. doi: 10.1002/cne.20919 PubMedCrossRefGoogle Scholar
  76. Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466(1):48–79PubMedCrossRefGoogle Scholar
  77. Krimer LS, Hyde TM, Herman MM, Saunders RC (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7(8):722–731PubMedCrossRefGoogle Scholar
  78. LaBar KS, Cabeza R (2006) Cognitive neuroscience of emotional memory. Nat Rev Neurosci 7(1):54–64PubMedCrossRefGoogle Scholar
  79. Lacy JW, Stark CE (2012) Intrinsic functional connectivity of the human medial temporal lobe suggests a distinction between adjacent MTL cortices and hippocampus. Hippocampus. doi: 10.1002/hipo.22047 PubMedPubMedCentralGoogle Scholar
  80. Libby LA, Ekstrom AD, Ragland JD, Ranganath C (2012) Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci 32(19):6550–6560. doi: 10.1523/JNEUROSCI.3711-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lisman JE, Grace AA (2005) The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713PubMedCrossRefGoogle Scholar
  82. Litman L, Awipi T, Davachi L (2009) Category-specificity in the human medial temporal lobe cortex. Hippocampus 19(3):308–319. doi: 10.1002/hipo.20515 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119–132. doi: 10.1006/nimg.1997.0315 PubMedCrossRefGoogle Scholar
  84. Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333(6040):353–357. doi: 10.1126/science.1204622 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Maddock RJ, Garrett AS, Buonocore MH (2001) Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667–676PubMedCrossRefGoogle Scholar
  86. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238PubMedCrossRefGoogle Scholar
  87. Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17(18):7103–7110PubMedGoogle Scholar
  88. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403. doi: 10.1073/pnas.070039597 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mayes A, Montaldi D, Migo E (2007) Associative memory and the medial temporal lobes. Trends Cogn Sci 11(3):126–135. doi: 10.1016/j.tics.2006.12.003 PubMedCrossRefGoogle Scholar
  90. Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8(6):608–619. doi: 10.1002/(SICI)1098-1063(1998)8:6<608:AID-HIPO3>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  91. Moser E, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13(9):3916–3925PubMedGoogle Scholar
  92. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12(5):419–446PubMedCrossRefGoogle Scholar
  93. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660PubMedCrossRefGoogle Scholar
  94. Nyberg L, Petersson KM, Nilsson LG, Sandblom J, Aberg C, Ingvar M (2001) Reactivation of motor brain areas during explicit memory for actions. Neuroimage 14(2):521–528. doi: 10.1006/nimg.2001.0801S1053-8119(01)90801-8 PubMedCrossRefGoogle Scholar
  95. Odagaki Y, Nishi N, Nakagawa S, Koyama T (1999) Activation of G proteins by neuropeptide Y and gamma-aminobutyric acid(B) receptor agonists in rat cerebral cortical membranes through distinct modes of action. J Pharmacol Exp Ther 291(3):1250–1256PubMedGoogle Scholar
  96. Olson IR, Plotzker A, Ezzyat Y (2007) The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130(Pt 7):1718–1731. doi: 10.1093/brain/awm052 PubMedCrossRefGoogle Scholar
  97. Penfield W, Perot P (1963) The brain’s record of auditory and visual experience. A final summary and discussion. Brain 86:595–696PubMedCrossRefGoogle Scholar
  98. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14(2):198–202. doi: 10.1016/j.conb.2004.03.015S0959438804000479 PubMedCrossRefGoogle Scholar
  99. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391PubMedCrossRefGoogle Scholar
  100. Poldrack RA, Rodriguez P (2004) How do memory systems interact? Evidence from human classification learning. Neurobiol Learn Mem 82(3):324–332PubMedCrossRefGoogle Scholar
  101. Poldrack RA, Clark J, Paré-Blagoev EJ, Shohamy D, Creso Moyano J, Myers C, Gluck MA (2001) Interactive memory systems in the human brain. Nature 414(6863):546–550PubMedCrossRefGoogle Scholar
  102. Poppenk J, Moscovitch M (2011) A hippocampal marker of recollection memory ability among healthy young adults: contributions of posterior and anterior segments. Neuron 72(6):931–937. doi: 10.1016/j.neuron.2011.10.014 PubMedCrossRefGoogle Scholar
  103. Poppenk J, Walia G, McIntosh AR, Joanisse MF, Klein D, Kohler S (2008) Why is the meaning of a sentence better remembered than its form? An fMRI study on the role of novelty-encoding processes. Hippocampus 18(9):909–918. doi: 10.1002/hipo.20453 PubMedCrossRefGoogle Scholar
  104. Poppenk J, Evensmoen HR, Moscovitch M, Nadel L (2013) Long-axis specialization of the human hippocampus. Trends Cogn Sci 17(5):230–240. doi: 10.1016/j.tics.2013.03.005 PubMedCrossRefGoogle Scholar
  105. Powell HW, Guye M, Parker GJ, Symms MR, Boulby P, Koepp MJ, Barker GJ, Duncan JS (2004) Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. Neuroimage 22(2):740–747. doi: 10.1016/j.neuroimage.2004.01.011S1053811904000448 PubMedCrossRefGoogle Scholar
  106. Pruessner JC, Kohler S, Crane J, Pruessner M, Lord C, Byrne A, Kabani N, Collins DL, Evans AC (2002) Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. Cereb Cortex 12(12):1342–1353PubMedCrossRefGoogle Scholar
  107. Qin S, Piekema C, Petersson KM, Han B, Luo J, Fernandez G (2007) Probing the transformation of discontinuous associations into episodic memory: an event-related fMRI study. Neuroimage 38(1):212–222. doi: 10.1016/j.neuroimage.2007.07.020 PubMedCrossRefGoogle Scholar
  108. Qin S, Rijpkema M, Tendolkar I, Piekema C, Hermans EJ, Binder M, Petersson KM, Luo J, Fernandez G (2009) Dissecting medial temporal lobe contributions to item and associative memory formation. Neuroimage 46(3):874–881. doi: 10.1016/j.neuroimage.2009.02.039 PubMedCrossRefGoogle Scholar
  109. Qin S, van Marle HJ, Hermans EJ, Fernandez G (2011) Subjective sense of memory strength and the objective amount of information accurately remembered are related to distinct neural correlates at encoding. J Neurosci 31(24):8920–8927. doi: 10.1523/JNEUROSCI.2587-10.2011 PubMedCrossRefGoogle Scholar
  110. Qin S, Young CB, Supekar K, Uddin LQ, Menon V (2012) Immature integration and segregation of emotion-related brain circuitry in young children. Proc Natl Acad Sci USA 109(20):7941–7946. doi: 10.1073/pnas.1120408109 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi: 10.1073/pnas.98.2.676 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ranganath C, Johnson MK, D’Esposito M (2000) Left anterior prefrontal activation increases with demands to recall specific perceptual information. J Neurosci 20(22):RC108PubMedGoogle Scholar
  113. Ranganath C, Yonelinas AP, Cohen MX, Dy CJ, Tom SM, D’Esposito M (2004) Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42(1):2–13PubMedCrossRefGoogle Scholar
  114. Richardson MP, Strange BA, Dolan RJ (2004) Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7(3):278–285. doi: 10.1038/nn1190nn1190 PubMedCrossRefGoogle Scholar
  115. Richter-Levin G, Akirav I (2000) Amygdala–hippocampus dynamic interaction in relation to memory. Mol Neurobiol 22(1–3):11–20. doi: 10.1385/MN:22:1-3:011 PubMedCrossRefGoogle Scholar
  116. Rosenberg-Lee M, Chang TT, Young CB, Wu S, Menon V (2011) Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study. Neuropsychologia 49(9):2592–2608. doi: 10.1016/j.neuropsychologia.2011.04.035 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ryan L, Lin CY, Ketcham K, Nadel L (2010) The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus 20(1):11–18. doi: 10.1002/hipo.20607 PubMedGoogle Scholar
  118. Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nature 354(6349):152–155. doi: 10.1038/354152a0 PubMedCrossRefGoogle Scholar
  119. Schon K, Hasselmo ME, Lopresti ML, Tricarico MD, Stern CE (2004) Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 24(49):11088–11097. doi: 10.1523/JNEUROSCI.3807-04.2004 PubMedCrossRefGoogle Scholar
  120. Schott BH, Sellner DB, Lauer CJ, Habib R, Frey JU, Guderian S, Heinze HJ, Düzel E (2004) Activation of midbrain structures by associative novelty and the formation of explicit memory in humans. Learn Mem 11(4):383–387PubMedCrossRefGoogle Scholar
  121. Schott BH, Richardson-Klavehn A, Henson RN, Becker C, Heinze HJ, Düzel E (2006) Neuroanatomical dissociation of encoding processes related to priming and explicit memory. J Neurosci 26(3):792–800PubMedCrossRefGoogle Scholar
  122. Seltzer B, Pandya DN (1976) Some cortical projections to the parahippocampal area in the rhesus monkey. Exp Neurol 50(1):146–160PubMedCrossRefGoogle Scholar
  123. Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci USA 105(49):19498–19503. doi: 10.1073/pnas.0807461105 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Shipton OA, El-Gaby M, Apergis-Schoute J, Deisseroth K, Bannerman DM, Paulsen O, Kohl MM (2014) Left-right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci USA 111(42):15238–15243. doi: 10.1073/pnas.1405648111 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shohamy D, Wagner AD (2008) Integrating memories in the human brain: hippocampal–midbrain encoding of overlapping events. Neuron 60(2):378–389PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shrager Y, Kirwan CB, Squire LR (2008) Activity in both hippocampus and perirhinal cortex predicts the memory strength of subsequently remembered information. Neuron 59(4):547–553. doi: 10.1016/j.neuron.2008.07.022 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev 4(8):637–648CrossRefGoogle Scholar
  128. Song Z, Wixted JT, Smith CN, Squire LR (2011) Different nonlinear functions in hippocampus and perirhinal cortex relating functional MRI activity to memory strength. Proc Natl Acad Sci USA 108(14):5783–5788. doi: 10.1073/pnas.1103225108 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Grady CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47(8–9):1765–1779. doi: 10.1016/j.neuropsychologia.2009.02.028 PubMedCrossRefGoogle Scholar
  130. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840. doi: 10.1016/j.neuroimage.2006.01.037 PubMedCrossRefGoogle Scholar
  131. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science (New York, NY) 253(5026):1380–1386CrossRefGoogle Scholar
  132. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. doi: 10.1146/annurev.neuro.27.070203.144130 PubMedCrossRefGoogle Scholar
  133. Staresina BP, Davachi L (2010) Object unitization and associative memory formation are supported by distinct brain regions. J Neurosci 30(29):9890–9897. doi: 10.1523/JNEUROSCI.0826-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Staresina BP, Duncan KD, Davachi L (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J Neurosci 31(24):8739–8747. doi: 10.1523/JNEUROSCI.4978-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Strange BA, Dolan RJ (2006) Anterior medial temporal lobe in human cognition: memory for fear and the unexpected. Cogn Neuropsychiatry 11(3):198–218. doi: 10.1080/13546800500305096 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci USA 96(7):4034–4039PubMedPubMedCentralCrossRefGoogle Scholar
  137. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev 15(10):655–669. doi: 10.1038/nrn3785 CrossRefGoogle Scholar
  138. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6):e1000100. doi: 10.1371/journal.pcbi.1000100 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157. doi: 10.1371/journal.pbio.1000157 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52(1):290–301. doi: 10.1016/j.neuroimage.2010.04.009S1053-8119(10)00403-9 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533. doi: 10.1002/cne.903500402 PubMedCrossRefGoogle Scholar
  142. Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3 Pt 2):1856–1877PubMedGoogle Scholar
  143. Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26(29):7555–7564. doi: 10.1523/JNEUROSCI.1068-06.2006 PubMedCrossRefGoogle Scholar
  144. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev 4(1):37–48. doi: 10.1038/nrn1009 CrossRefGoogle Scholar
  145. Van Hoesen G, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95(1):1–24PubMedCrossRefGoogle Scholar
  146. Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the Rhesus monkey. Science 175(4029):1471–1473PubMedCrossRefGoogle Scholar
  147. van Strien NM, Cappaert NL, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat Rev Neurosci 10(4):272–282. doi: 10.1038/nrn2614 PubMedCrossRefGoogle Scholar
  148. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal–parietal memory network. J Neurophysiol 96(6):3517–3531. doi: 10.1152/jn.00048.2006 PubMedCrossRefGoogle Scholar
  149. Voermans NC, Petersson KM, Daudey L, Weber B, Van Spaendonck KP, Kremer HP, Fernandez G (2004) Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron 43(3):427–435. doi: 10.1016/j.neuron.2004.07.009S0896627304004349 PubMedCrossRefGoogle Scholar
  150. Wagner AD, Shannon BJ, Kahn I, Buckner RL (2005) Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 9(9):445–453. doi: 10.1016/j.tics.2005.07.001 PubMedCrossRefGoogle Scholar
  151. Wheeler ME, Petersen SE, Buckner RL (2000) Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc Natl Acad Sci USA 97(20):11125–11129PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wimmer GE, Shohamy D (2012) Preference by association: how memory mechanisms in the hippocampus bias decisions. Science (New York, NY) 338(6104):270–273. doi: 10.1126/science.1223252 CrossRefGoogle Scholar
  153. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494. doi: 10.1038/nrn1406nrn1406 PubMedCrossRefGoogle Scholar
  154. Wolosin SM, Zeithamova D, Preston AR (2012) Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. J Cogn Neurosci 24(7):1532–1547PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yassa MA, Stark CE (2008) Multiple signals of recognition memory in the medial temporal lobe. Hippocampus 18(9):945–954. doi: 10.1002/hipo.20452 PubMedCrossRefGoogle Scholar
  156. Young KD, Bellgowan PS, Bodurka J, Drevets WC (2013) Functional neuroimaging of sex differences in autobiographical memory recall. Hum Brain Mapp. doi: 10.1002/hbm.22144 PubMedCentralGoogle Scholar
  157. Zeineh MM, Holdsworth S, Skare S, Atlas SW, Bammer R (2012) Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe. Neuroimage 62(3):2065–2082. doi: 10.1016/j.neuroimage.2012.05.065 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  3. 3.Stanford Neuroscience InstituteStanford University School of MedicineStanfordUSA
  4. 4.Key Laboratory for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and TechnologyChengduPeople’s Republic of China

Personalised recommendations