Brain Structure and Function

, Volume 221, Issue 6, pp 3123–3140 | Cite as

The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys

  • Omar A. Gharbawie
  • Iwona Stepniewska
  • Jon H. Kaas
Original Article


The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity.


Intracortical electrical stimulation Motor cortex Ventral premotor cortex Thalamocortical Cerebellum Basal ganglia 



The work was supported by grants from the National Institutes of Health (EY2686 to J.H.K, NS055843 to I.S.). O.A.G was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research followed by a career development award from the National Institutes of Health (K99 NS079471). We are grateful to Drs. Nicole Young, Mary Baldwin, Pooja Balaram, and Barbara O’Brien, for assistance with motor mapping. Laura Trice provided excellent support for histology and Mary Feurtado was instrumental to pre- and post-operative animal care.


  1. Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13(12):5105–5118PubMedGoogle Scholar
  2. Bruce K, Grofova I (1992) Notes on a light and electron microscopic double-labeling method combining anterograde tracing with Phaseolus vulgaris leucoagglutinin and retrograde tracing with cholera toxin subunit B. J Neurosci Methods 45(1–2):23–33. doi: 10.1016/0165-0270(92)90040-K CrossRefPubMedGoogle Scholar
  3. Darian-Smith C, Darian-Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J Comp Neurol 299(1):17–46CrossRefPubMedGoogle Scholar
  4. Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689PubMedGoogle Scholar
  5. Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25(6):1375–1386. doi: 10.1523/JNEUROSCI.3902-04.2005 CrossRefPubMedGoogle Scholar
  6. Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain 124(Pt 3):571–586CrossRefPubMedGoogle Scholar
  7. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey I. Somatotopy and the control of proximal movements. Exp Brain Res 71(3):475–490CrossRefPubMedGoogle Scholar
  8. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1989) Somatotopic representation in inferior area 6 of the macaque monkey. Brain Behav Evol 33(2–3):118–121PubMedGoogle Scholar
  9. Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G (2011) Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5. Brain Struct Funct 216(1):43–65. doi: 10.1007/s00429-010-0293-6 CrossRefPubMedGoogle Scholar
  10. Gharbawie OA, Stepniewska I, Kaas JH (2011a) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in New World monkeys. Cereb Cortex 21(9):1981–2002. doi: 10.1093/cercor/bhq260 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gharbawie OA, Stepniewska I, Qi H, Kaas JH (2011b) Multiple parietal-frontal pathways mediate grasping in macaque monkeys. J Neurosci 31(32):11660–11677. doi: 10.1523/JNEUROSCI.1777-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23(3):269–279CrossRefPubMedGoogle Scholar
  13. Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5):841–851CrossRefPubMedGoogle Scholar
  14. Holsapple JW, Preston JB, Strick PL (1991) The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J Neurosci 11(9):2644–2654PubMedGoogle Scholar
  15. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19(4):1446–1463PubMedGoogle Scholar
  16. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493. doi: 10.1038/nn1544 CrossRefPubMedGoogle Scholar
  17. Jones EG (1985) The thalamus. Plenum Press, New YorkCrossRefGoogle Scholar
  18. Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154(4):349–377. doi: 10.1002/cne.901540402 CrossRefPubMedGoogle Scholar
  19. Kaas JH (2008) The somatosensory thalamus and associated pathways. In: Gardner EP, Kaas JH (eds) The senses a comprehensive reference, vol 6, Somatosensation. Elsevier, Oxford, pp 117–141Google Scholar
  20. Kuypers HG, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in therhesus monkey. Brain Res 24(1):29–48. doi: 10.1016/0006-8993(70)90272-6 CrossRefPubMedGoogle Scholar
  21. Macchi G, Jones EG (1997) Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86(4):670–685. doi: 10.3171/jns.1997.86.4.0670 CrossRefPubMedGoogle Scholar
  22. Maranesi M, Roda F, Bonini L, Rozzi S, Ferrari PF, Fogassi L, Coude G (2012) Anatomo-functional organization of the ventral primary motor and premotor cortex in the macaque monkey. Eur J Neurosci 36(10):3376–3387. doi: 10.1111/j.1460-9568.2012.08252.x CrossRefPubMedGoogle Scholar
  23. Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18(2):125–136CrossRefPubMedGoogle Scholar
  24. Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280(3):468–488CrossRefPubMedGoogle Scholar
  25. McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol 80(4):1961–1980PubMedGoogle Scholar
  26. Morel A, Liu J, Wannier T, Jeanmonod D, Rouiller EM (2005) Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey. Eur J Neurosci 21(4):1007–1029. doi: 10.1111/j.1460-9568.2005.03921.x CrossRefPubMedGoogle Scholar
  27. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78(4):2226–2230PubMedGoogle Scholar
  28. Nakajima K, Maier MA, Kirkwood PA, Lemon RN (2000) Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J Neurophysiol 84(2):698–709PubMedGoogle Scholar
  29. Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 277(1):53–79. doi: 10.1002/cne.902770105 CrossRefPubMedGoogle Scholar
  30. Olszewski J (1952) The thalamus of Macaca Mulatta. Krager, BaselGoogle Scholar
  31. Park MC, Belhaj-Saif A, Gordon M, Cheney PD (2001) Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J Neurosci 21(8):2784–2792PubMedGoogle Scholar
  32. Park MC, Belhaj-Saif A, Cheney PD (2004) Properties of primary motor cortex output to forelimb muscles in rhesus macaques. J Neurophysiol 92(5):2968–2984. doi: 10.1152/jn.00649.2003 CrossRefPubMedGoogle Scholar
  33. Picard N, Smith AM (1992) Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J Neurophysiol 68(5):1867–1881PubMedGoogle Scholar
  34. Qi HX, Stepniewska I, Kaas JH (2000) Reorganization of primary motor cortex in adult macaque monkeys with long-standing amputations. J Neurophysiol 84(4):2133–2147PubMedGoogle Scholar
  35. Qi HX, Jain N, Collins CE, Lyon DC, Kaas JH (2010) Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy. Proc Natl Acad Sci USA 107(7):3192–3197. doi: 10.1073/pnas.0914962107 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Raos V, Umilta MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95(2):709–729. doi: 10.1152/jn.00463.2005 CrossRefPubMedGoogle Scholar
  37. Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci USA 103(21):8257–8262. doi: 10.1073/Pnas.0602933103 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rathelot JA, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA 106(3):918–923. doi: 10.1073/pnas.0808362106 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey II. Area F5 and the control of distal movements. Exp Brain Res 71(3):491–507CrossRefPubMedGoogle Scholar
  40. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345(2):185–213. doi: 10.1002/cne.903450204 CrossRefPubMedGoogle Scholar
  41. Rouiller EM, Tanne J, Moret V, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409(1):131–152. doi: 10.1002/(SICI)1096-9861(19990621)409:1<131:AID-CNE10>3.0.CO;2-A CrossRefPubMedGoogle Scholar
  42. Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368(2):215–228. doi: 10.1002/(SICI)1096-9861(19960429)368:2<215:AID-CNE4>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  43. Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4(2):539–560PubMedGoogle Scholar
  44. Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86(5):2125–2143PubMedGoogle Scholar
  45. Stepniewska I, Preuss TM, Kaas JH (1994a) Architectonic subdivisions of the motor thalamus of owl monkeys: Nissl, acetylcholinesterase, and cytochrome oxidase patterns. J Comp Neurol 349(4):536–557CrossRefPubMedGoogle Scholar
  46. Stepniewska I, Preuss TM, Kaas JH (1994b) Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol 349(4):558–582CrossRefPubMedGoogle Scholar
  47. Stepniewska I, Sakai ST, Qi HX, Kaas JH (2003) Somatosensory input to the ventrolateral thalamic region in the macaque monkey: potential substrate for parkinsonian tremor. J Comp Neurol 455(3):378–395. doi: 10.1002/cne.10499 CrossRefPubMedGoogle Scholar
  48. Stepniewska I, Fang PC, Kaas JH (2005) Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc Natl Acad Sci USA 102(13):4878–4883CrossRefPubMedPubMedCentralGoogle Scholar
  49. Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5) I. Demonstration by retrograde transport. Brain Res 157:325–330CrossRefPubMedGoogle Scholar
  50. Umilta MA, Brochier T, Spinks RL, Lemon RN (2007) Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. J Neurophysiol 98(1):488–501. doi: 10.1152/jn.01094.2006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Omar A. Gharbawie
    • 1
    • 2
    • 3
  • Iwona Stepniewska
    • 1
  • Jon H. Kaas
    • 1
  1. 1.Department of PsychologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of Neurobiology, Center for the Neural Basis of Cognition, Systems Neuroscience InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of NeurobiologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations