Brain Structure and Function

, Volume 221, Issue 5, pp 2755–2765 | Cite as

Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network

  • Sebastian Markett
  • Christian Montag
  • Behrend Heeren
  • Rayna Saryiska
  • Bernd Lachmann
  • Bernd Weber
  • Martin Reuter
Original Article

Abstract

Functional connections between brain regions constitute the substrate of the human functional connectome, whose topography has been discussed as an endophenotype for psychiatric disorders. Genetic influences on the entire connectome, however, have been rarely investigated so far. We tested for connectome-wide influences of the val158met (rs4860) polymorphism on the catechol-O-methyltransferase (COMT) gene by applying formal network analysis and eigenvector centrality mapping on the voxel level to resting-state functional magnetic imaging data. This approach finds brain regions that are central in the network by aggregating local and global connectivity patterns, most importantly without the requirement to select regions or networks of interest. The COMT variant linked to high enzyme activity increased network centrality in distributed brain areas that are known to constitute the brain’s default mode network. Further results also indicated a COMT influence on areas implicated in the somatomotor network. These findings are in line with the polymorphism’s alleged role in cognitive processing and its role in psychotic disorders. The study is the first to demonstrate the influence of a functional and behaviorally relevant genetic variant on connectome-wide functional connectivity and is an important step toward establishing the functional connectome as an endophenotype for psychiatric and behavioral phenotypes.

Keywords

Catechol-O-methyltransferase Functional connectivity Resting-state fMRI Functional connectome Default mode network 

Supplementary material

429_2015_1069_MOESM1_ESM.pdf (328 kb)
Supplementary material 1 (PDF 328 kb)
429_2015_1069_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)

References

  1. Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18(3):251–270PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH (2012) Motor “dexterity”? Evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cereb Cortex 22(1):51–59PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barnett JH, Jones PB, Robbins TW, Müller U (2007) Effects of the catechol-O-methyltransferase Val158 Met polymorphism on executive function: a meta-analysis of the wisconsin card sort test in schizophrenia and healthy controls. Mol Psychiatr 12(5):502–509Google Scholar
  6. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013PubMedPubMedCentralCrossRefGoogle Scholar
  7. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34(4):537–541PubMedCrossRefGoogle Scholar
  8. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Williamson PC (2009) Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res Neuroimaging 174(1):17–23PubMedCrossRefGoogle Scholar
  9. Buckner RL, Petersen SE, Ojemann JG, Miezin FM, Squire LR, Raichle ME (1995) Functional anatomical studies of explicit and implicit memory retrieval tasks. J Neurosci 15(1):12–29PubMedGoogle Scholar
  10. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Ann NY Acad Sci 1124(1):1–38PubMedCrossRefGoogle Scholar
  11. Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B (1999) Pain perception: is there a role for primary somatosensory cortex? PNAS 96(14):7705–7709PubMedPubMedCentralCrossRefGoogle Scholar
  12. Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP (2013) Clinical applications of the functional connectome. Neuro Image 80:527–540PubMedGoogle Scholar
  13. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Weinberger DR (2004a) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen X, Wang X, O’Neill AF, Walsh D, Kendler KS (2004b) Variants in the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatr 9(10):962–967CrossRefGoogle Scholar
  15. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. PNAS 103(37):13848–13853PubMedPubMedCentralCrossRefGoogle Scholar
  16. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuro Image 29(4):1359–1367PubMedGoogle Scholar
  17. Diamond A, Briand L, Fossella J, Gehlbach L (2004) Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatr 161(1):125–132PubMedCrossRefGoogle Scholar
  18. Diatchenko L, Nackley AG, Slade GD, Bhalang K, Belfer I, Max MB, Maixner W (2006) Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 125(3):216–224PubMedCrossRefGoogle Scholar
  19. Docherty AR, Sponheim SR (2008) Anhedonia as a phenotype for the Val158Met COMT polymorphism in relatives of patients with schizophrenia. J Abnorm Psychol 117(4):788PubMedPubMedCentralCrossRefGoogle Scholar
  20. Domschke K, Freitag CM, Kuhlenbäumer G, Schirmacher A, Sand P, Nyhuis P, Deckert J (2004) Association of the functional V158M catechol-O-methyl-transferase polymorphism with panic disorder in women. Int J Neuropsychopharmacol 7(02):183–188PubMedCrossRefGoogle Scholar
  21. Domschke K, Deckert J, O’Donovan MC, Glatt SJ (2007) Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet 144(5):667–673CrossRefGoogle Scholar
  22. Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT et al (2007) Distinct brain networks for adaptive and stable task control in humans. PNAS 104(26):11073–11078PubMedPubMedCentralCrossRefGoogle Scholar
  23. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. PNAS 98(12):6917–6922PubMedPubMedCentralCrossRefGoogle Scholar
  24. Enoch MA, Xu K, Ferro E, Harris CR, Goldman D (2003) Genetic origins of anxiety in women: a role for a functional catechol-O-methyltransferase polymorphism. Psychiatr Gen 13(1):33–41CrossRefGoogle Scholar
  25. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. PNAS 106(17):7209–7214PubMedPubMedCentralCrossRefGoogle Scholar
  26. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional Magn Res Im (fMRI): use of a cluster-size threshold. Magn Reson Med 33(5):636–647PubMedCrossRefGoogle Scholar
  27. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yücel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry BJ, Pantelis C, Bullmore ET (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31(9):3261–3270PubMedCrossRefGoogle Scholar
  28. Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuro Image 80:426–444PubMedGoogle Scholar
  29. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional Magnetic Resonance Imaging. Nat Rev Neurosci 8(9):700–711PubMedCrossRefGoogle Scholar
  30. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Åden U (2007) Resting-state networks in the infant brain. PNAS 104(39):15531–15536PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fukunaga M, Horovitz SG, van Gelderen P, de Zwart JA, Jansma JM, Ikonomidou VN et al (2006) Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Res Im 24(8):979–992CrossRefGoogle Scholar
  32. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Blangero J (2010) Genetic control over the resting brain. PNAS 107(3):1223–1228PubMedPubMedCentralCrossRefGoogle Scholar
  33. Glatt SJ, Faraone SV, Tsuang MT (2003) Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatr 160(3):469–476PubMedCrossRefGoogle Scholar
  34. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Gen 6(7):521–532CrossRefGoogle Scholar
  35. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. PNAS 100(1):253–258PubMedPubMedCentralCrossRefGoogle Scholar
  36. Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hayasaka S (2013) Functional connectivity networks with and without global signal correction. Front Hum Neurosci 7:880PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hong J, Shu-Leong H, Tao X, Lap-Ping Y (1998) Distribution of catechol-O-methyltransferase expression in human central nervous system. Neuro Report 9(12):2861–2864Google Scholar
  39. Horn A, Ostwald D, Reisert M, Blankenburg F (2014) The structural–functional connectome and the default mode network of the human brain. Neuro Image 102:142–151PubMedGoogle Scholar
  40. Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S (2010) A new measure of centrality for brain networks. PLoS One 5(8):e12200PubMedPubMedCentralCrossRefGoogle Scholar
  41. Karayiorgou M, Sobin C, Blundell ML, Galke BL, Malinova L, Goldberg P, Gogos JA (1999) Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiatr 45(9):1178–1189CrossRefGoogle Scholar
  42. Keller CJ, Bickel S, Honey CJ, Groppe DM, Entz L, Craddock RC et al (2013) Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J Neurosci 33(15):6333–6342PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenet Genomics 6(3):243–250CrossRefGoogle Scholar
  44. Liu B, Song M, Li J, Liu Y, Li K, Yu C, Jiang T (2010) Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. J Neurosci 30(1):64–69PubMedCrossRefGoogle Scholar
  45. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 5(4):e10232PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31(11):4087–4100PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. PNAS 100(10):6186–6191PubMedPubMedCentralCrossRefGoogle Scholar
  48. Meyer BM, Huemer J, Rabl U, Boubela RN, Kalcher K, Berger A, et al (2014) Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults. Br Struc FuncGoogle Scholar
  49. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7(10):818–827PubMedCrossRefGoogle Scholar
  50. Meyer-Lindenberg A, Kohn PD, Kolachana B (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8:594–596PubMedCrossRefGoogle Scholar
  51. Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, Weinberger DR (2006) Impact of complex genetic variation in COMT on human brain function. Mol Psychiatr 11(9):867–877CrossRefGoogle Scholar
  52. Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatr 15(9):918–927. doi:10.1038/mp.2009.36 CrossRefGoogle Scholar
  53. Montag C, Buckholtz JW, Hartmann P, Merz M, Burk C, Hennig J, Reuter M (2008) COMT genetic variation affects fear processing: psychophysiological evidence. Behav Neurosci 122(4):901PubMedCrossRefGoogle Scholar
  54. Montag C, Jurkiewicz M, Reuter M (2012) The role of the catechol-O-methyltransferase (COMT) gene in personality and related psychopathological disorders. CNS Neurol Disord Drug Targets 11(3):236–250PubMedPubMedCentralCrossRefGoogle Scholar
  55. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44(3):893–905. doi:10.1016/j.neuroimage.2008.09.036
  56. Olsson CA, Anney RJ, Lotfi-Miri M, Byrnes GB, Williamson R, Patton GC (2005) Association between the COMT Val158Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health. Psychiatr Gen 15(2):109–115CrossRefGoogle Scholar
  57. Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim YH (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42(5):1357–1362PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pooley EC, Fineberg N, Harrison PJ (2007) The met158 allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case–control study and meta-analysis. Mol Psychiatr 12(6):556–561CrossRefGoogle Scholar
  59. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE (2013) Evidence for hubs in human functional brain networks. Neuron 79(4):798–813PubMedCrossRefGoogle Scholar
  60. Raichle ME (2011) The restless brain. Brain Connect 1(1):3–12PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rakvåg TT, Klepstad P, Baar C, Kvam TM, Dale O, Kaasa S, Skorpen F (2005) The Val158Met polymorphism of the human catechol-O- methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116(1):73–78PubMedCrossRefGoogle Scholar
  62. Reuter M, Hennig J (2005) Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. Neuro Report 16(10):1135–1138Google Scholar
  63. Reuter M, Peters K, Schroeter K, Koebke W, Lenardon D, Bloch B, Hennig J (2005) The influence of the dopaminergic system on cognitive functioning: a molecular genetic approach. Behav Brain Res 164(1):93–99PubMedCrossRefGoogle Scholar
  64. Reuter M, Frenzel C, Walter NT, Markett S, Montag C (2011) Investigating the genetic basis of altruism: the role of the COMT Val158Met polymorphism. Soc Cog Aff Neurosci 6(5):662–668CrossRefGoogle Scholar
  65. Riedl V, Valet M, Wöller A, Sorg C, Vogel D, Sprenger T, Tölle TR (2011) Repeated pain induces adaptations of intrinsic brain activity to reflect past and predict future pain. Neuro Image 57(1):206–213PubMedGoogle Scholar
  66. Rotarska-Jagiela A, van de Ven V, Oertel-Knöchel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117(1):21–30PubMedCrossRefGoogle Scholar
  67. Sambataro F, Reed JD, Murty VP, Das S, Tan HY, Callicott JH et al (2009) Catechol-O-methyltransferase valine. Biol Psychi 66(6):540–548CrossRefGoogle Scholar
  68. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052
  69. Schürhoff F, Szöke A, Chevalier F, Roy I, Méary A, Bellivier F, Leboyer M (2007) Schizotypal dimensions: an intermediate phenotype associated with the COMT high activity allele. Am J Med Genet B Neuropsychiatr Genet 144(1):64–68CrossRefGoogle Scholar
  70. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ et al (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19(10):2209–2229PubMedPubMedCentralCrossRefGoogle Scholar
  72. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663PubMedCrossRefGoogle Scholar
  73. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. PNAS USA 106(31):13040–13045PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comp Biol 1(4):e42CrossRefGoogle Scholar
  75. Sylvester CM, Corbetta M, Raichle ME, Rodebaugh TL, Schlaggar BL, Sheline YI et al (2012) Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci 35(9):527–535PubMedPubMedCentralCrossRefGoogle Scholar
  76. Tan HY, Sust S, Buckholtz J, Mattay V, Meyer-Lindenberg A, Egan M, Callicott J (2006) Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatray 163(11):1969–1977CrossRefGoogle Scholar
  77. Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal parietal striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27(49):13393–13401PubMedCrossRefGoogle Scholar
  78. Thomason ME, Dennis EL, Joshi AA, Joshi SH, Dinov ID, Chang C, Gotlib IH (2011) Resting-state fMRI can reliably map neural networks in children. NeuroImage 55(1):165–175. doi:10.1016/j.neuroimage.2010.11.080 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M, Anderson AL, Romero R (2013) Cross-hemispheric functional connectivity in the human fetal brain. Sci Trans Med 5(173):173ra24CrossRefGoogle Scholar
  80. Thompson PM, Ge T, Glahn DC, Jahanshad N, Nichols TE (2013) Genetics of the connectome. Neuro Image 80:475–488PubMedPubMedCentralGoogle Scholar
  81. Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, Yu C (2013) Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 8(10):e78697. doi:10.1371/journal.pone.0078697 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Trachtenberg AJ, Filippini N, Ebmeier KP, Smith SM, Karpe F, Mackay CE (2012) The effects of APOE on the functional architecture of the resting brain. Neuro Image 59(1):565–572PubMedGoogle Scholar
  83. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ (2004) Catechol-O-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24(23):5331–5335PubMedCrossRefGoogle Scholar
  84. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol- O-Methyltransferase, cognition, and psychosis: val158Met and beyond. Biol Psychiatr 60(2):141–151CrossRefGoogle Scholar
  85. Tunbridge EM, Farrell SM, Harrison PJ, Mackay CE (2013) Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. Neuro Image 68:49–54PubMedPubMedCentralGoogle Scholar
  86. Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neurosci 31(47):16907–16915PubMedPubMedCentralCrossRefGoogle Scholar
  87. Vaidya CJ, Gordon EM (2013) Phenotypic variability in resting-state functional connectivity: current status. Brain Connect 3(2):99–120PubMedPubMedCentralCrossRefGoogle Scholar
  88. Van Albada SJ, Robinson PA (2007) Transformation of arbitrary distributions to the normal distribution with application to EEG test–retest reliability. J Neurosci Methods 161(2):205–211PubMedCrossRefGoogle Scholar
  89. van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Euro Neuro 23(1):19–23Google Scholar
  90. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86PubMedCrossRefGoogle Scholar
  91. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. PNAS 106(4):1279–1284PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F (2012) Fast eigenvector centrality mapping of voxel-wise connectivity in functional Magnetic Resonance Imaging: implementation, validation, and interpretation. Brain Connect 2(5):265–274PubMedCrossRefGoogle Scholar
  93. Woo JM, Yoon KS, Choi YH, Oh KS, Lee YS, Yu BH (2004) The association between panic disorder and the L/L genotype of catechol-O-methyltransferase. J Psychiatr Res 38(4):365–370PubMedCrossRefGoogle Scholar
  94. Wu T, Wang L, Chen Y, Zhao C, Li K, Chan P (2009) Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett 460(1):6–10PubMedCrossRefGoogle Scholar
  95. Wu G-R, Stramaglia S, Chen H, Liao W, Marinazzo D (2013) Mapping the voxel-wise effective connectome in resting state FMRI. PloS One 8(9):e73670. doi:10.1371/journal.pone.0073670
  96. Yan C-G, Zang Y-F (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13. doi:10.3389/fnsys.2010.00013 Google Scholar
  97. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Goldman D (2003) COMT val158met genotype affects µ-opioid neurotransmitter responses to a pain stressor. Science 299(5610):1240–1243PubMedCrossRefGoogle Scholar
  98. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Markett
    • 1
    • 3
  • Christian Montag
    • 2
  • Behrend Heeren
    • 4
  • Rayna Saryiska
    • 2
  • Bernd Lachmann
    • 2
  • Bernd Weber
    • 3
    • 5
    • 6
  • Martin Reuter
    • 1
    • 3
  1. 1.Department of PsychologyUniversity of BonnBonnGermany
  2. 2.Department of PsychologyUniversity of UlmUlmGermany
  3. 3.Center for Economics and NeuroscienceUniversity of BonnBonnGermany
  4. 4.Institute for Numerical SimulationUniversity of BonnBonnGermany
  5. 5.Life and Brain Center BonnBonnGermany
  6. 6.Department of EpileptologyUniversity Clinics BonnBonnGermany

Personalised recommendations