Advertisement

Brain Structure and Function

, Volume 221, Issue 5, pp 2717–2734 | Cite as

Actin dynamics shape microglia effector functions

  • Ria Uhlemann
  • Karen Gertz
  • Wolfgang Boehmerle
  • Tobias Schwarz
  • Christiane Nolte
  • Dorette Freyer
  • Helmut Kettenmann
  • Matthias EndresEmail author
  • Golo KronenbergEmail author
Original Article

Abstract

Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca2+]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

Keywords

Actin cytoskeleton Gelsolin Inflammation Microglia polarization 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich TRR 43 and Cluster of Excellence 257 NeuroCure), VolkswagenStiftung (Lichtenberg Program to M. E.), the Bundesministerium für Bildung und Forschung (Center for Stroke Research Berlin) and the European Union’s Seventh Framework Program (Grant No. FP7/2008–2013) under grant Agreement Nos. 201024 and 202213 (European Stroke Network). The authors wish to thank Bettina Herrmann, Susann Eigel and Stefanie Balz for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2015_1067_MOESM1_ESM.pdf (32 kb)
Supplementary Fig. 1 Isolation and in vitro cultivation of adult microglia. The procedure for the cultivation of adult-derived microglia has been described in detail previously (Scheffel et al. 2012). a Astrocytic “substrate” cultures were derived from neonatal wild-type mice. b Brain lysates from Gsn +/+ and Gsn −/− brains were added to the substrate cultures. c The purity of these microglial cultures was confirmed by genotyping PCR (PDF 32 kb)
429_2015_1067_MOESM2_ESM.pdf (204 kb)
Supplementary Fig. 2 Microglia density in Gsn +/+ and Gsn −/− mouse brain. The density of Iba1+ cells was quantified in hippocampus (a) and striatum (b) of adult (<6 months) and aged (>16 months) Gsn +/+ and Gsn −/− mice. *p<0.05, two-way ANOVA followed by Tukey’s multiple comparisons test. N = 6 mice per group; Scale bars 100 µM (PDF 204 kb)

References

  1. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161. doi: 10.1126/science.1227901 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen WE, Jones GE, Pollard JW, Ridley AJ (1997) Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110(Pt 6):707–720PubMedGoogle Scholar
  3. Allen WE, Zicha D, Ridley AJ, Jones GE (1998) A role for Cdc42 in macrophage chemotaxis. J Cell Biol 141:1147–1157. doi: 10.1083/jcb.141.5.1147 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ (1998) Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 17:1362–1370. doi: 10.1093/emboj/17.5.1362 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bencsath FA, Shartava A, Monteiro CA, Goodman SR (1996) Identification of the disulfide-linked peptide in irreversibly sickled cell beta-actin. Biochemistry 35:4403–4408. doi: 10.1021/bi960063n CrossRefPubMedGoogle Scholar
  6. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247. doi: 10.1007/s12035-010-8105-9 CrossRefPubMedGoogle Scholar
  7. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275:5163–5170CrossRefPubMedGoogle Scholar
  8. Carta S, Lavieri R, Rubartelli A (2013) Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front Immunol 4:123. doi: 10.3389/fimmu.2013.00123 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casella JF, Flanagan MD, Lin S (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293:302–305CrossRefPubMedGoogle Scholar
  10. Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry 42:12749–12760. doi: 10.1021/bi030029q CrossRefPubMedGoogle Scholar
  11. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418. doi: 10.1007/s11481-009-9164-4 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflamm 3:27. doi: 10.1186/1742-2094-3-27 CrossRefGoogle Scholar
  13. Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632. doi: 10.1016/S0891-5849(01)00749-3 CrossRefPubMedGoogle Scholar
  14. de Oliveira CA, Mantovani B (1988) Latrunculin A is a potent inhibitor of phagocytosis by macrophages. Life Sci 43:1825–1830CrossRefPubMedGoogle Scholar
  15. Dhawan G, Floden AM, Combs CK (2012) Amyloid-beta oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging 33:2247–2261. doi: 10.1016/j.neurobiolaging.2011.10.027 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Endres M, Fink K, Zhu J, Stagliano NE, Bondada V, Geddes JW, Azuma T, Mattson MP, Kwiatkowski DJ, Moskowitz MA (1999) Neuroprotective effects of gelsolin during murine stroke. J Clin Invest 103:347–354. doi: 10.1172/JCI4953 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fa M, Orozco IJ, Francis YI, Saeed F, Gong Y, Arancio O (2010) Preparation of oligomeric beta-amyloid 1-42 and induction of synaptic plasticity impairment on hippocampal slices. J Vis Exp. doi: 10.3791/1884 PubMedPubMedCentralGoogle Scholar
  18. Farber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54:656–665. doi: 10.1002/glia.20412 CrossRefPubMedGoogle Scholar
  19. Farber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, Bechmann I, Enjyoji K, Robson SC, Kettenmann H (2008) The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56:331–341. doi: 10.1002/glia.20606 CrossRefPubMedGoogle Scholar
  20. Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I, Lante F, Buisson A (2014) Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 34:6084–6097. doi: 10.1523/JNEUROSCI.4261-13.2014 CrossRefPubMedGoogle Scholar
  21. Freyer D, Manz R, Ziegenhorn A, Weih M, Angstwurm K, Docke WD, Meisel A, Schumann RR, Schonfelder G, Dirnagl U, Weber JR (1999) Cerebral endothelial cells release TNF-alpha after stimulation with cell walls of Streptococcus pneumoniae and regulate inducible nitric oxide synthase and ICAM-1 expression via autocrine loops. J Immunol 163:4308–4314PubMedGoogle Scholar
  22. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148. doi: 10.1038/ncb1528 CrossRefPubMedGoogle Scholar
  23. Furukawa K, Fu W, Li Y, Witke W, Kwiatkowski DJ, Mattson MP (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 17:8178–8186PubMedGoogle Scholar
  24. Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25:2637–2646. doi: 10.1523/JNEUROSCI.5118-04.2005 CrossRefPubMedGoogle Scholar
  25. Goddette DW, Frieden C (1986) The kinetics of cytochalasin D binding to monomeric actin. J Biol Chem 261:15970–15973PubMedGoogle Scholar
  26. Goenka S, Kaplan MH (2011) Transcriptional regulation by STAT6. Immunol Res 50:87–96. doi: 10.1007/s12026-011-8205-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. doi: 10.1016/j.immuni.2010.05.007 CrossRefPubMedGoogle Scholar
  28. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589. doi: 10.1038/nrm1682 CrossRefPubMedGoogle Scholar
  29. Gourlay CW, Ayscough KR (2006) Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol 26:6487–6501. doi: 10.1128/MCB.00117-06 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Haarer BK, Amberg DC (2004) Old yellow enzyme protects the actin cytoskeleton from oxidative stress. Mol Biol Cell 15:4522–4531. doi: 10.1091/mbc.E04-06-0445 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119:736–748. doi: 10.1111/j.1471-4159.2011.07481.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. doi: 10.1038/nn1997 CrossRefPubMedGoogle Scholar
  33. Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K (2013) Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 256:1–6. doi: 10.1016/j.jneuroim.2012.11.005 CrossRefPubMedGoogle Scholar
  34. Henriques AG, Vieira SI, da Cruz ESEF, da Cruz ESOA (2010) Abeta promotes Alzheimer’s disease-like cytoskeleton abnormalities with consequences to APP processing in neurons. J Neurochem 113:761–771. doi: 10.1111/j.1471-4159.2010.06643.x CrossRefPubMedGoogle Scholar
  35. Holzinger A (2001) Jasplakinolide. An actin-specific reagent that promotes actin polymerization. Methods Mol Biol 161:109–120. doi: 10.1007/978-1-60761-376-3_4 PubMedGoogle Scholar
  36. Iqbal AJ, Regan-Komito D, Christou I, White GE, McNeill E, Kenyon A, Taylor L, Kapellos TS, Fisher EA, Channon KM, Greaves DR (2013) A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages. PLoS ONE 8:e58744. doi: 10.1371/journal.pone.0058744 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jonsson F, Gurniak CB, Fleischer B, Kirfel G, Witke W (2012) Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS ONE 7:e36034. doi: 10.1371/journal.pone.0036034 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, Mori M (2001) Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Brain Res Mol Brain Res 90:165–173. doi: 10.1016/S0169-328X(01)00100-0 CrossRefPubMedGoogle Scholar
  39. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90CrossRefPubMedGoogle Scholar
  40. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE 8:e60921. doi: 10.1371/journal.pone.0060921 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318CrossRefPubMedGoogle Scholar
  42. Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463. doi: 10.1002/cne.10945 CrossRefPubMedGoogle Scholar
  43. Kronenberg G, Wang LP, Synowitz M, Gertz K, Katchanov J, Glass R, Harms C, Kempermann G, Kettenmann H, Endres M (2005) Nestin-expressing cells divide and adopt a complex electrophysiologic phenotype after transient brain ischemia. J Cereb Blood Flow Metab 25:1613–1624. doi: 10.1038/sj.jcbfm.9600156 CrossRefPubMedGoogle Scholar
  44. Kronenberg G et al (2010) Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis. J Neurosci 30:3419–3431. doi: 10.1523/JNEUROSCI.4231-09.2010 CrossRefPubMedGoogle Scholar
  45. Kwan W, Trager U, Davalos D, Chou A, Bouchard J, Andre R, Miller A, Weiss A, Giorgini F, Cheah C, Moller T, Stella N, Akassoglou K, Tabrizi SJ, Muchowski PJ (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122:4737–4747. doi: 10.1172/JCI64484 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118:9–18. doi: 10.1182/blood-2010-08-265892 CrossRefPubMedGoogle Scholar
  47. Leadsham JE, Kotiadis VN, Tarrant DJ, Gourlay CW (2010) Apoptosis and the yeast actin cytoskeleton. Cell Death Differ 17:754–762. doi: 10.1038/cdd.2009.196 CrossRefPubMedGoogle Scholar
  48. Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100:4843–4848. doi: 10.1073/pnas.0735876100 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279:49523–49532. doi: 10.1074/jbc.M402034200 CrossRefPubMedGoogle Scholar
  50. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–616. doi: 10.1038/44183 CrossRefPubMedGoogle Scholar
  51. Macleod CL, Kakuda DK (1996) Regulation of CAT: cationic amino acid transporter gene expression. Amino Acids 11:171–191. doi: 10.1007/BF00813859 PubMedGoogle Scholar
  52. Maier E, Duschl A, Horejs-Hoeck J (2012) STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol 42:2827–2833. doi: 10.1002/eji.201242433 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262. doi: 10.1523/JNEUROSCI.5572-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210:3–12. doi: 10.1016/j.jneuroim.2009.02.003 CrossRefPubMedGoogle Scholar
  55. Morgan TE, Lockerbie RO, Minamide LS, Browning MD, Bamburg JR (1993) Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol 122:623–633CrossRefPubMedGoogle Scholar
  56. Moss DW, Bates TE (2001) Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 13:529–538. doi: 10.1046/j.1460-9568.2001.01418.x CrossRefPubMedGoogle Scholar
  57. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738. doi: 10.1146/annurev.immunol.17.1.701 CrossRefPubMedGoogle Scholar
  58. Ni J, Dong Z, Han W, Kondrikov D, Su Y (2013) The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis. Free Radic Biol Med 61C:26–39. doi: 10.1016/j.freeradbiomed.2013.03.012 CrossRefGoogle Scholar
  59. Nishida Y, Sugahara-Kobayashi M, Takahashi Y, Nagata T, Ishikawa K, Asai S (2006) Screening for control genes in mouse hippocampus after transient forebrain ischemia using high-density oilgonucleotide array. J Pharmacol Sci 101:52–57. doi: 10.1254/jphs.FP0050881 CrossRefPubMedGoogle Scholar
  60. Olah M, Biber K, Vinet J, Boddeke HW (2011) Microglia phenotype diversity. CNS Neurol Disord Drug Targets 10:108–118. doi: 10.2174/187152711794488575 CrossRefPubMedGoogle Scholar
  61. Pannasch U, Farber K, Nolte C, Blonski M, Yan Chiu S, Messing A, Kettenmann H (2006) The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci 33:401–411. doi: 10.1016/j.mcn.2006.08.009 CrossRefPubMedGoogle Scholar
  62. Prada I, Furlan R, Matteoli M, Verderio C (2013) Classical and unconventional pathways of vesicular release in microglia. Glia 61:1003–1017. doi: 10.1002/glia.22497 CrossRefPubMedGoogle Scholar
  63. Prinz M, Hanisch UK (1999) Murine microglial cells produce and respond to interleukin-18. J Neurochem 72:2215–2218. doi: 10.1046/j.1471-4159.1999.0722215.x CrossRefPubMedGoogle Scholar
  64. Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, Nau R, Parsa R, Harris RA, Boddeke HW, Chuang HN, Pukrop T, Wessels JT, Jurgens T, Merkler D, Bruck W, Schnaars M, Simons M, Kettenmann H, Hanisch UK (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60:1930–1943. doi: 10.1002/glia.22409 CrossRefPubMedGoogle Scholar
  65. Semino C, Angelini G, Poggi A, Rubartelli A (2005) NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106:609–616. doi: 10.1182/blood-2004-10-3906 CrossRefPubMedGoogle Scholar
  66. Shurety W, Merino-Trigo A, Brown D, Hume DA, Stow JL (2000) Localization and post-Golgi trafficking of tumor necrosis factor-alpha in macrophages. J Interferon Cytokine Res 20:427–438. doi: 10.1089/107999000312379 CrossRefPubMedGoogle Scholar
  67. Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182CrossRefPubMedGoogle Scholar
  68. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551. doi: 10.1038/nn.3358 CrossRefPubMedGoogle Scholar
  69. van den Berg A, Freitas J, Keles F, Snoek M, van Marle J, Jansen HM, Lutter R (2006) Cytoskeletal architecture differentially controls post-transcriptional processing of IL-6 and IL-8 mRNA in airway epithelial-like cells. Exp Cell Res 312:1496–1506. doi: 10.1016/j.yexcr.2006.01.010 CrossRefPubMedGoogle Scholar
  70. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97. doi: 10.1038/nrn3638 CrossRefPubMedGoogle Scholar
  71. Wang E, Gundersen D (1984) Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro. Exp Cell Res 154:191–202. doi: 10.1016/0014-4827(84)90679-7 CrossRefPubMedGoogle Scholar
  72. Webb JL, Harvey MW, Holden DW, Evans TJ (2001) Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect Immun 69:6391–6400. doi: 10.1128/Iai.69.10.6391-6400.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ (1995) Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81:41–51CrossRefPubMedGoogle Scholar
  74. Yao J, Keri JE, Taffs RE, Colton CA (1992) Characterization of interleukin-1 production by microglia in culture. Brain Res 591:88–93. doi: 10.1016/0006-8993(92)90981-E CrossRefPubMedGoogle Scholar
  75. Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacin M, Modolell M, Lloberas J, Celada A (2006) Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J Immunol 176:5918–5924. doi: 10.4049/jimmunol.176.10.5918 CrossRefPubMedGoogle Scholar
  76. Yildirim F, Gertz K, Kronenberg G, Harms C, Fink KB, Meisel A, Endres M (2008) Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol 210:531–542. doi: 10.1016/j.expneurol.2007.11.031 CrossRefPubMedGoogle Scholar
  77. Zhou X, Spittau B, Krieglstein K (2012) TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflamm 9:210. doi: 10.1186/1742-2094-9-210 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ria Uhlemann
    • 1
  • Karen Gertz
    • 1
    • 2
  • Wolfgang Boehmerle
    • 1
  • Tobias Schwarz
    • 1
  • Christiane Nolte
    • 3
  • Dorette Freyer
    • 1
  • Helmut Kettenmann
    • 3
  • Matthias Endres
    • 1
    • 2
    • 4
    • 5
    Email author
  • Golo Kronenberg
    • 1
    • 2
    • 6
    Email author
  1. 1.Klinik und Hochschulambulanz für NeurologieCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin BerlinBerlinGermany
  3. 3.Cellular NeuroscienceMax-Delbruck-Center for Molecular MedicineBerlin-BuchGermany
  4. 4.Excellence Cluster NeuroCureBerlinGermany
  5. 5.German Center for Cardiovascular Research (DZHK)BerlinGermany
  6. 6.Klinik und Poliklinik für Psychiatrie und PsychotherapieCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations