Brain Structure and Function

, Volume 221, Issue 5, pp 2589–2605 | Cite as

Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex

  • Andrew T. ReidEmail author
  • Danilo Bzdok
  • Robert Langner
  • Peter T. Fox
  • Angela R. Laird
  • Katrin Amunts
  • Simon B. Eickhoff
  • Claudia R. Eickhoff
Original Article


Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of information is processed according to an anteroposterior gradient of abstract-to-concrete representations.


Meta-analytic connectivity modeling Functional connectivity Structural covariance Working memory Anterior lateral prefrontal cortex Posterior lateral prefrontal cortex 



This study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/4-1, LA 3071/3-1; EI 816/6-1.), the National Institute of Mental Health (R01-MH074457), the Helmholtz-Portfolio Project on “Supercomputing and Modeling for the Human Brain” and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project).

Supplementary material

429_2015_1060_MOESM1_ESM.docx (116 kb)
Supplementary material 1 (DOCX 115 kb)


  1. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341PubMedCrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  4. Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5:119–126PubMedCrossRefGoogle Scholar
  5. Baddeley A (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4:417–423PubMedCrossRefGoogle Scholar
  6. Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839PubMedCrossRefGoogle Scholar
  7. Baddeley AD, Hitch G (1974) Working memory. In: Gordon HB (ed), Psychology of learning and motivation. Academic Press, pp 47–89Google Scholar
  8. Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 12:193–200PubMedCrossRefGoogle Scholar
  9. Badre D, Hoffman J, Cooney JW, D’Esposito M (2009) Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat Neurosci 12:515–522PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barbey AK, Koenigs M, Grafman J (2011) Orbitofrontal contributions to human working memory. Cereb Cortex NY N 1991(21):789–795CrossRefGoogle Scholar
  11. Barch DM, Braver TS, Nystrom LE, Forman SD, Noll DC, Cohen JD (1997) Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35:1373–1380PubMedCrossRefGoogle Scholar
  12. Barrett LF, Tugade MM, Engle RW (2004) Individual differences in working memory capacity and dual-process theories of the mind. Psychol Bull 130:553–573PubMedPubMedCentralCrossRefGoogle Scholar
  13. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37:90–101PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berryhill ME, Chein J, Olson IR (2011) At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia 49:1306–1315PubMedPubMedCentralCrossRefGoogle Scholar
  15. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  16. Braver TS, Barch DM, Kelley WM, Buckner RL, Cohen NJ, Miezin FM, Snyder AZ, Ollinger JM, Akbudak E, Conturo TE, Petersen SE (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage 14:48–59PubMedCrossRefGoogle Scholar
  17. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Acad Sci 1124:1–38CrossRefGoogle Scholar
  18. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33:430–448PubMedCrossRefGoogle Scholar
  19. Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495PubMedCrossRefGoogle Scholar
  20. Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S (2012) Anticorrelations in resting state networks without global signal regression. NeuroImage 59:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage 47:1448–1459PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495:53–69PubMedPubMedCentralCrossRefGoogle Scholar
  23. Christoff K, Gabrieli JDE (2013) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28:168–186Google Scholar
  24. Christoff K, Ream JM, Geddes LPT, Gabrieli JDE (2003) Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behav Neurosci 117:1161–1168PubMedCrossRefGoogle Scholar
  25. Clos M, Rottschy C, Laird AR, Fox PT, Eickhoff SB (2014) Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. NeuroImage 99:269–280PubMedPubMedCentralCrossRefGoogle Scholar
  26. Corbetta M, Kincade J, Shulman G (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523PubMedCrossRefGoogle Scholar
  27. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324PubMedPubMedCentralCrossRefGoogle Scholar
  28. D’Esposito M, Postle BR (1999) The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37:1303–1315PubMedCrossRefGoogle Scholar
  29. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194PubMedCrossRefGoogle Scholar
  30. Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R, Westin C-F (2007) Comparison of fiber tracts derived from in vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. NeuroImage 37:530–538PubMedCrossRefGoogle Scholar
  31. Deiber M-P, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibañez V, Giannakopoulos P (2007) Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. J Cogn Neurosci 19:158–172PubMedCrossRefGoogle Scholar
  32. Deschamps I, Baum SR, Gracco VL (2014) On the role of the supramarginal gyrus in phonological processing and verbal working memory: Evidence from rTMS studies. Neuropsychologia 53:39–46PubMedCrossRefGoogle Scholar
  33. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980PubMedCrossRefGoogle Scholar
  34. Dolcos F, Iordan AD, Kragel J, Stokes J, Campbell R, McCarthy G, Cabeza R (2013) Neural correlates of opposing effects of emotional distraction on working memory and episodic memory: an event-related FMRI investigation. Front. Psychol. 4:293PubMedPubMedCentralCrossRefGoogle Scholar
  35. Drevets W, Raichle M (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cogn Emot 12:353–385CrossRefGoogle Scholar
  36. Du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129:3315–3328PubMedCrossRefGoogle Scholar
  37. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179PubMedCrossRefGoogle Scholar
  38. Duncan J (2013) The structure of cognition: attentional episodes in mind and brain. Neuron 80:35–50PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42:107–121PubMedCrossRefGoogle Scholar
  40. Eickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K, Watson JDG, Amunts K (2005) High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24:206–215PubMedCrossRefGoogle Scholar
  41. Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage 32:570–582PubMedCrossRefGoogle Scholar
  42. Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:511–521PubMedCrossRefGoogle Scholar
  43. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926PubMedPubMedCentralCrossRefGoogle Scholar
  44. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TEJ (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci Off J Soc Neurosci 30:6409–6421CrossRefGoogle Scholar
  45. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage 57:938–949PubMedPubMedCentralCrossRefGoogle Scholar
  46. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59:2349–2361PubMedPubMedCentralCrossRefGoogle Scholar
  47. Evans AC (2013) Networks of anatomical covariance. NeuroImage 80:489–504PubMedCrossRefGoogle Scholar
  48. Eyler LT, Chen C-H, Panizzon MS, Fennema-Notestine C, Neale MC, Jak A, Jernigan TL, Fischl B, Franz CE, Lyons MJ, Grant M, Prom-Wormley E, Seidman LJ, Tsuang MT, Fiecas MJA, Dale AM, Kremen WS (2012) A comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study. Twin Res. Hum. Genet Off J Int Soc Twin Stud 15:304–314Google Scholar
  49. Fletcher PC, Henson RN (2001) Frontal lobes and human memory: insights from functional neuroimaging. Brain J Neurol 124:849–881CrossRefGoogle Scholar
  50. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  51. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283PubMedPubMedCentralCrossRefGoogle Scholar
  53. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36PubMedCrossRefGoogle Scholar
  54. Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16:129–135PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gomarus HK, Althaus M, Wijers AA, Minderaa RB (2006) The effects of memory load and stimulus relevance on the EEG during a visual selective memory search task: an ERP and ERD/ERS study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 117:871–884CrossRefGoogle Scholar
  56. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hamidi M, Tononi G, Postle BR (2008) Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res 1230:202–210PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. NeuroImage 60:2389–2398PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221PubMedCrossRefGoogle Scholar
  60. Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Sci 11:229–235PubMedCrossRefGoogle Scholar
  61. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151PubMedCrossRefGoogle Scholar
  62. Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185PubMedCrossRefGoogle Scholar
  63. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci Off J Soc Neurosci 29:14496–14505CrossRefGoogle Scholar
  64. Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ, McKay DR, Bzdok D, Laird RW, Robinson JL, Turner JA, Turkeltaub PE, Lancaster JL, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:349PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205PubMedCrossRefGoogle Scholar
  66. Langner R, Rottschy C, Laird AR, Fox PT, Eickhoff SB (2014) Meta-analytic connectivity modeling revisited: controlling for activation base rates. NeuroImage 99:559–570PubMedCrossRefGoogle Scholar
  67. Lee S-H, Kravitz DJ, Baker CI (2013) Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat Neurosci 16:997–999PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lisman J (2005) The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15:913–922PubMedCrossRefGoogle Scholar
  69. Lückmann HC, Jacobs HIL, Sack AT (2014) The cross-functional role of frontoparietal regions in cognition: internal attention as the overarching mechanism. Prog Neurobiol 116:66–86PubMedCrossRefGoogle Scholar
  70. Makeig S, Delorme A, Westerfield M, Jung T-P, Townsend J, Courchesne E, Sejnowski TJ (2004) Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol 2:e176PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mars RB, Neubert F-X, Noonan MP, Sallet J, Toni I, Rushworth MFS (2012) On the relationship between the “default mode network” and the “social brain”. Front. Hum, Neurosci 6 Google Scholar
  72. Mason MF, Norton MI, Horn JDV, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mohanty A, Engels AS, Herrington JD, Heller W, Ho M-HR, Banich MT, Webb AG, Warren SL, Miller GA (2007) Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology 44:343–351PubMedCrossRefGoogle Scholar
  74. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. Am J Neuroradiol 29:843–852PubMedCrossRefGoogle Scholar
  75. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44:893–905PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nichols T, Brett M, Andersson J, Wager T, Poline J-B (2005) Valid conjunction inference with the minimum statistic. NeuroImage 25:653–660PubMedCrossRefGoogle Scholar
  77. Nooner KB, Mennes M, Li Q, Hinz CM, Kaplan MS, Rachlin AB, Cheung B, Yan C, Calhoun V, Courtney W, King M, Kelly AMC, Martino AD, Petkova E, Biswal B, Hoptman MJ, Javitt DC, Milham MP (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152PubMedPubMedCentralCrossRefGoogle Scholar
  78. Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data. Trends Cogn Sci 10:59–63PubMedCrossRefGoogle Scholar
  79. Poldrack RA, Kittur A, Kalar D, Miller E, Seppa C, Gil Y, Parker DS, Sabb FW, Bilder RM (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17CrossRefGoogle Scholar
  80. Postle BR, Ferrarelli F, Hamidi M, Feredoes E, Massimini M, Peterson M, Alexander A, Tononi G (2006) Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal. Cortex J Cogn Neurosci 18:1712–1722PubMedCrossRefGoogle Scholar
  81. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  82. Reid AT, Evans AC (2013) Structural networks in Alzheimer’s disease. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 23:63–77CrossRefGoogle Scholar
  83. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31:173–184PubMedPubMedCentralGoogle Scholar
  84. Rogalsky C, Matchin W, Hickok G (2008) Broca’s area, sentence comprehension, and working memory: an fMRI Study. Front Hum Neurosci 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage 60:830–846PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rowe JB, Toni I, Josephs O, Frackowiak RSJ, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288:1656–1660PubMedCrossRefGoogle Scholar
  87. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95:7092–7096PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57:97–103PubMedCrossRefGoogle Scholar
  89. Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel FC (2007) Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci 25:587–593PubMedCrossRefGoogle Scholar
  90. Schenk T, McIntosh RD (2010) Do we have independent visual streams for perception and action? Cogn Neurosci 1:52–62PubMedCrossRefGoogle Scholar
  91. Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex NY N 1991(18):2141–2157CrossRefGoogle Scholar
  92. Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex NY N 1991(18):846–867CrossRefGoogle Scholar
  93. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17:457–467PubMedCrossRefGoogle Scholar
  94. Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social and unconstrained cognition. PLoS One 7:e30920PubMedPubMedCentralCrossRefGoogle Scholar
  95. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98PubMedCrossRefGoogle Scholar
  96. Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Essen DCV, Feinberg DA, Yacoub ES, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci 109:3131–3136PubMedPubMedCentralCrossRefGoogle Scholar
  97. Spreng RN, Grady CL (2009) Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network. J Cogn Neurosci 22:1112–1123CrossRefGoogle Scholar
  98. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci 105:12569–12574PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stuss DT (2006) Frontal lobes and attention: processes and networks, fractionation and integration. J Int Neuropsychol Soc 12:261–271PubMedCrossRefGoogle Scholar
  100. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16:765–780PubMedCrossRefGoogle Scholar
  101. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp 33:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  102. Van Essen DC (2004) Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage 23(Supplement 1):S97–S107PubMedCrossRefGoogle Scholar
  103. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. NeuroImage 47:1408–1416PubMedCrossRefGoogle Scholar
  104. Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978PubMedCrossRefGoogle Scholar
  105. Wright IC, Sham P, Murray RM, Weinberger DR, Bullmore ET (2002) Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage 17:256–271PubMedCrossRefGoogle Scholar
  106. Zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. NeuroImage 60:162–169PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrew T. Reid
    • 1
    Email author
  • Danilo Bzdok
    • 1
    • 2
    • 7
  • Robert Langner
    • 1
    • 2
  • Peter T. Fox
    • 4
    • 8
  • Angela R. Laird
    • 5
  • Katrin Amunts
    • 1
    • 6
  • Simon B. Eickhoff
    • 1
    • 2
  • Claudia R. Eickhoff
    • 1
    • 3
  1. 1.Institute of Neuroscience and Medicine (INM-1), Research Centre JülichJülichGermany
  2. 2.Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine UniversityDüsseldorfGermany
  3. 3.Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital AachenAachenGermany
  4. 4.University of Texas Health Sciences Center at San AntonioSan AntonioUSA
  5. 5.Florida International UniversityMiamiUSA
  6. 6.C. & O. Vogt Institute for Brain ResearchHeinrich Heine UniversityDüsseldorfGermany
  7. 7.Gif-Sur-YvetteFrance
  8. 8.South Texas Veterans Health Care SystemSan AntonioUSA

Personalised recommendations