Advertisement

Brain Structure and Function

, Volume 221, Issue 4, pp 2109–2121 | Cite as

Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults

  • C. Meng
  • J. G. Bäuml
  • M. Daamen
  • J. Jaekel
  • J. Neitzel
  • L. Scheef
  • B. Busch
  • N. Baumann
  • H. Boecker
  • C. Zimmer
  • P. Bartmann
  • D. Wolke
  • A. M. Wohlschläger
  • Christian SorgEmail author
Original Article

Abstract

Preterm birth is a leading cause for impaired neurocognitive development with an increased risk for persistent cognitive deficits in adulthood. In newborns, preterm birth is associated with interrelated white matter (WM) alterations and deep gray matter (GM) loss; however, little is known about the persistence and relevance of these subcortical brain changes. We tested the hypothesis that the pattern of correspondent subcortical WM and GM changes is present in preterm-born adults and has a brain-injury-like nature, i.e., it predicts lowered general cognitive performance. Eighty-five preterm-born and 69 matched term-born adults were assessed by diffusion- and T1-weighted MRI and cognitive testing. Main outcome measures were fractional anisotropy of water diffusion for WM property, GM volume for GM property, and full-scale IQ for cognitive performance. In preterm-born adults, reduced fractional anisotropy was widely distributed ranging from cerebellum to brainstem to hemispheres. GM volume was reduced in the thalamus, striatum, temporal cortices, and increased in the cingulate cortices. Fractional anisotropy reductions were specifically associated with GM loss in thalamus and striatum, with correlation patterns for both regions extensively overlapping in the WM of brainstem and hemispheres. For overlap regions, fractional anisotropy was positively related with both gestational age and full-scale IQ. Results provide evidence for extensive, interrelated, and adverse WM and GM subcortical changes in preterm-born adults. Data suggest persistent brain-injury-like changes of subcortical–cortical connectivity after preterm delivery.

Keywords

Preterm-born adults Diffusion MRI White matter Voxel-based morphometry Gray matter IQ 

Notes

Acknowledgments

We thank all current and former members of the Bavarian Longitudinal Study Group who contributed to general study organization, recruitment, and data collection, management and subsequent analyses, including (in alphabetical order): Stephan Czeschka, Claudia Grünzinger, Christian Koch, Diana Kurze, Sonja Perk, Andrea Schreier, Antje Strasser, Julia Trummer, and Eva van Rossum. We are grateful to the staff of the Department of Neuroradiology in Munich and the Department of Radiology in Bonn for their help in data collection. Most importantly, we thank all our study participants and their families for their efforts to take part in this study. This study was supported by Chinese Scholar Council (CSC, File No: 2010604026 to C.M.), German Federal Ministry of Education and Science (BMBF 01ER0801 to P.B. and D.W., BMBF 01EV0710 to A.M.W., BMBF 01ER0803 to C.S.) and the Kommission für Klinische Forschung, Technische Universität München (KKF 8765162 to C.S).

Conflict of interest

All authors report no biomedical financial interests or potential conflicts of interest.

Supplementary material

429_2015_1032_MOESM1_ESM.docx (9.8 mb)
Supplementary material 1 (DOCX 10048 kb)

References

  1. Allin MP et al (2011) White matter and cognition in adults who were born preterm. PloS One 6:e24525. doi: 10.1371/journal.pone.0024525 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson MJ, Robinson J (2001) Permutation tests for linear models. Aust N Z J Stat 43:75–88CrossRefGoogle Scholar
  3. Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD, Counsell SJ (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage 35:1021–1027. doi: 10.1016/j.neuroimage.2007.01.035 CrossRefPubMedGoogle Scholar
  4. Ball G et al (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex (New York, NY: 1991) 22:1016–1024. doi: 10.1093/cercor/bhr176 Google Scholar
  5. Ball G et al (2013a) The influence of preterm birth on the developing thalamocortical connectome. Cortex J Devot Study Nerv Syst Behav 49:1711–1721. doi: 10.1016/j.cortex.2012.07.006 CrossRefGoogle Scholar
  6. Ball G et al (2013b) Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci USA 110:9541–9546. doi: 10.1073/pnas.1301652110 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ball G et al (2014) Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA 111:7456–7461. doi: 10.1073/pnas.1324118111 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks Nature reviews. Neuroscience 8:45–56. doi: 10.1038/nrn2044 PubMedGoogle Scholar
  9. Bäuml JG et al (2014) Correspondence between aberrant intrinsic network connectivity and gray-matter volume in the ventral brain of preterm born adults. Cereb Cortex (New York, NY: 1991). doi: 10.1093/cercor/bhu133 Google Scholar
  10. Blencowe H et al (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379:2162–2172. doi: 10.1016/s0140-6736(12)60820-4 CrossRefPubMedGoogle Scholar
  11. Boardman JP et al (2010) A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. NeuroImage 52:409–414. doi: 10.1016/j.neuroimage.2010.04.261 CrossRefPubMedGoogle Scholar
  12. Constable RT et al (2008) Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics 121:306–316. doi: 10.1542/peds.2007-0414 CrossRefPubMedGoogle Scholar
  13. Counsell SJ et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain J Neurol 131:3201–3208. doi: 10.1093/brain/awn268 CrossRefGoogle Scholar
  14. Dean JM et al (2013) Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci Transl Med 5:168ra167. doi: 10.1126/scitranslmed.3004669 CrossRefGoogle Scholar
  15. Deary IJ, Bastin ME, Pattie A, Clayden JD, Whalley LJ, Starr JM, Wardlaw JM (2006) White matter integrity and cognition in childhood and old age. Neurology 66:505–512. doi: 10.1212/01.wnl.0000199954.81900.e2 CrossRefPubMedGoogle Scholar
  16. Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences Nature reviews. Neuroscience 11:201–211. doi: 10.1038/nrn2793 PubMedGoogle Scholar
  17. Deng W (2010) Neurobiology of injury to the developing brain Nature reviews. Neurology 6:328–336. doi: 10.1038/nrneurol.2010.53 PubMedGoogle Scholar
  18. D’Onofrio BM, Class QA, Rickert ME, Larsson H, Langstrom N, Lichtenstein P (2013) Preterm birth and mortality and morbidity: a population-based quasi-experimental study. JAMA Psychiatry 70:1231–1240. doi: 10.1001/jamapsychiatry.2013.2107 CrossRefPubMedGoogle Scholar
  19. Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. doi: 10.1146/annurev.neuro.27.070203.144152 CrossRefPubMedGoogle Scholar
  20. Dubowitz LM, Dubowitz V, Goldberg C (1970) Clinical assessment of gestational age in the newborn infant. J Pediatr 77:1–10CrossRefPubMedGoogle Scholar
  21. Eikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK (2011) Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. NeuroImage 54:1774–1785. doi: 10.1016/j.neuroimage.2010.10.037 CrossRefPubMedGoogle Scholar
  22. Fischi-Gomez E et al (2014) Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex (New York, NY: 1991). doi: 10.1093/cercor/bhu073 Google Scholar
  23. Gutbrod T, Wolke D, Soehne B, Ohrt B, Riegel K (2000) Effects of gestation and birth weight on the growth and development of very low birthweight small for gestational age infants: a matched group comparison. Arch Dis Child Fetal Neonatal Ed 82:F208–F214CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63:656–661. doi: 10.1203/PDR.0b013e31816c825c CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673–686. doi: 10.1038/nrn2188 CrossRefPubMedGoogle Scholar
  26. Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294. doi: 10.1542/peds.2004-0326 CrossRefPubMedGoogle Scholar
  27. Jaekel J, Baumann N, Wolke D (2013) Effects of gestational age at birth on cognitive performance: a function of cognitive workload demands. PloS One 8:e65219. doi: 10.1371/journal.pone.0065219 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Katz J et al (2013) Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382:417–425. doi: 10.1016/S0140-6736(13)60993-9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71:397–406. doi: 10.1002/ana.22612 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Komitova M et al (2013) Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci 33:13375–13387. doi: 10.1523/jneurosci.5286-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meng C et al (2013) Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain J Neurol. doi: 10.1093/brain/awt290 Google Scholar
  32. Milligan DW (2010) Outcomes of children born very preterm in Europe. Arch Dis Child Fetal Neonatal Ed 95:F234–F240. doi: 10.1136/adc.2008.143685 CrossRefPubMedGoogle Scholar
  33. Mullen KM et al (2011) Preterm birth results in alterations in neural connectivity at age 16 years. NeuroImage 54:2563–2570. doi: 10.1016/j.neuroimage.2010.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nagy Z et al (2009) Structural correlates of preterm birth in the adolescent brain. Pediatrics 124:e964–e972. doi: 10.1542/peds.2008-3801 CrossRefPubMedGoogle Scholar
  35. Northam GB et al (2012) Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain J Neurol 135:3781–3798. doi: 10.1093/brain/aws276 CrossRefGoogle Scholar
  36. Nosarti C et al (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain J Neurol 131:205–217. doi: 10.1093/brain/awm282 Google Scholar
  37. Nosarti C, Shergill SS, Allin MP, Walshe M, Rifkin L, Murray RM, McGuire PK (2009) Neural substrates of letter fluency processing in young adults who were born very preterm: alterations in frontal and striatal regions. NeuroImage 47:1904–1913. doi: 10.1016/j.neuroimage.2009.04.041 CrossRefPubMedGoogle Scholar
  38. Nosarti C et al (2012) Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 69:E1–E8. doi: 10.1001/archgenpsychiatry.2011.1374 CrossRefPubMedGoogle Scholar
  39. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Aden U (2014) Brain growth gains and losses in extremely preterm infants at term. Cereb Cortex (New York, NY: 1991). doi: 10.1093/cercor/bht431 Google Scholar
  40. Pandit AS et al (2013) Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth. Cereb Cortex (New York, NY: 1991). doi: 10.1093/cercor/bht086 Google Scholar
  41. Peterson BS et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947CrossRefPubMedGoogle Scholar
  42. Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, Drinkwater ME, Volpe JJ, Kinney HC (2007) Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 114:619–631. doi: 10.1007/s00401-007-0295-5 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Poulsen G, Wolke D, Kurinczuk JJ, Boyle EM, Field D, Alfirevic Z, Quigley MA (2013) Gestational age and cognitive ability in early childhood: a population-based cohort study. Paediatr Perinat Epidemiol 27:371–379. doi: 10.1111/ppe.12058 CrossRefPubMedGoogle Scholar
  44. Prechtl HF (1967) Neurological sequelae of prenatal and perinatal complications. Br Med J 4:763–767CrossRefPubMedPubMedCentralGoogle Scholar
  45. Riegel K, Orth B, Wolke D, Osterlund K (1995) Die Entwicklung gefährdet geborener Kinder bis zum 5 Lebensjahr. Thieme, Stuttgart (Germany)Google Scholar
  46. Ritter J, Schmitz T, Chew LJ, Buhrer C, Mobius W, Zonouzi M, Gallo V (2013) Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 33:8990–9002. doi: 10.1523/jneurosci.5528-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Robinson S, Li Q, Dechant A, Cohen ML (2006) Neonatal loss of gamma-aminobutyric acid pathway expression after human perinatal brain injury. J Neurosurg 104:396–408. doi: 10.3171/ped.2006.104.6.396 PubMedPubMedCentralGoogle Scholar
  48. Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17:341–346. doi: 10.1038/nn.3604 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Serenius F et al (2013) Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 309:1810–1820. doi: 10.1001/jama.2013.3786 CrossRefPubMedGoogle Scholar
  50. Skranes J et al (2007) Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain J Neurol 130:654–666. doi: 10.1093/brain/awm001 CrossRefGoogle Scholar
  51. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98. doi: 10.1016/j.neuroimage.2008.03.061 CrossRefPubMedGoogle Scholar
  52. Smith SM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505. doi: 10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  53. Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, Edwards AD (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119:759–765. doi: 10.1542/peds.2006-2508 CrossRefPubMedGoogle Scholar
  54. Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164CrossRefPubMedGoogle Scholar
  55. Von Aster M, Neubauer A, Horn R (2006) Wechsler Intelligenztest für Erwachsene (WIE). Deutschsprachige Bearbeitung und Adaptation des WAIS-III von David Wechsler. Harcourt Test Services, Frankfurt/Main (Germany)Google Scholar
  56. Wolke D, Meyer R (1999) Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: the Bavarian Longitudinal Study. Dev Med Child Neurol 41:94–109CrossRefPubMedGoogle Scholar
  57. Zubiaurre-Elorza L et al (2011) Gray matter volume decrements in preterm children with periventricular leukomalacia. Pediatr Res 69:554–560. doi: 10.1203/PDR.0b013e3182182366 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • C. Meng
    • 1
    • 4
    • 5
  • J. G. Bäuml
    • 1
    • 4
  • M. Daamen
    • 6
    • 7
  • J. Jaekel
    • 8
    • 10
  • J. Neitzel
    • 1
    • 4
    • 5
  • L. Scheef
    • 6
  • B. Busch
    • 7
  • N. Baumann
    • 8
  • H. Boecker
    • 6
  • C. Zimmer
    • 1
  • P. Bartmann
    • 7
  • D. Wolke
    • 8
    • 9
  • A. M. Wohlschläger
    • 1
    • 3
    • 4
    • 5
  • Christian Sorg
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of NeuroradiologyTechnische Universität München TUMMunichGermany
  2. 2.Department of PsychiatryTechnische Universität München TUMMunichGermany
  3. 3.Department of NeurologyTechnische Universität München TUMMunichGermany
  4. 4.TUM-Neuroimaging Center of Klinikum rechts der IsarTechnische Universität München TUMMunichGermany
  5. 5.Graduate School of Systemic Neurosciences GSNLudwig-Maximilians-Universität, BiocenterMunichGermany
  6. 6.Functional Neuroimaging Group, Department of RadiologyUniversity Hospital BonnBonnGermany
  7. 7.Department of NeonatologyUniversity Hospital BonnBonnGermany
  8. 8.Department of PsychologyUniversity of WarwickCoventryUK
  9. 9.Warwick Medical SchoolUniversity of WarwickCoventryUK
  10. 10.Department of Developmental PsychologyRuhr-University BochumBochumGermany

Personalised recommendations