Brain Structure and Function

, Volume 221, Issue 4, pp 2075–2092 | Cite as

Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain

  • Xuhui Wang
  • Sudhir Pathak
  • Lucia Stefaneanu
  • Fang-Cheng Yeh
  • Shiting Li
  • Juan C. Fernandez-Miranda
Original Article


The subcomponents of the human superior longitudinal fasciculus (SLF) are disputed. The objective of this study was to investigate the segments, connectivity and asymmetry of the SLF. We performed high angular diffusion spectrum imaging (DSI) analysis on ten healthy adults. We also conducted fiber tracking on a 30-subject DSI template (CMU-30) and 488-subject template from the Human Connectome Project (HCP-488). In addition, five normal brains obtained at autopsy were microdissected. Based on tractography and microdissection results, we show that the human SLF differs significantly from that of monkey. The fibers corresponding to SLF-I found in 6 out of 20 hemispheres proved to be part of the cingulum fiber system in all cases and confirmed on both DSI and HCP-488 template. The most common patterns of connectivity bilaterally were as follows: from angular gyrus to caudal middle frontal gyrus and dorsal precentral gyrus representing SLF-II (or dorsal SLF), and from supramarginal gyrus to ventral precentral gyrus and pars opercularis to form SLF-III (or ventral SLF). Some connectivity features were, however, clearly asymmetric. Thus, we identified a strong asymmetry of the dorsal SLF (SLF-II), where the connectivity between the supramarginal gyrus with the dorsal precentral gyrus and the caudal middle frontal gyrus was only present in the left hemisphere. Contrarily, the ventral SLF (SLF-III) showed fairly constant connectivity with pars triangularis only in the right hemisphere. The results provide a novel neuroanatomy of the SLF that may help to better understand its functional role in the human brain.


Superior longitudinal fasciculus Fiber tractography White matter Fiber tracts Arcuate fasciculus Microdissection 



Superior longitudinal fasciculus


Arcuate fasciculus


Region of interest


Region of avoidance


Quantitative anisotropy


Diffusion spectrum imaging


Conflict of interest

None to declare.


  1. Agrawal A, Kapfhammer JP, Kress A, Wichers H, Deep A, Feindel W, Sonntag VK, Spetzler RF, Preul MC (2011) Josef Klingler’s models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery 69(2):238–252 (discussion 252–234). doi: 10.1227/NEU.0b013e318214ab79
  2. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632CrossRefPubMedGoogle Scholar
  3. Brown EC, Jeong JW, Muzik O, Rothermel R, Matsuzaki N, Juhasz C, Sood S, Asano E (2013) Evaluating the arcuate fasciculus with combined diffusion-weighted MRI tractography and electrocorticography. Hum Brain Mapp. doi: 10.1002/hbm.22331 PubMedPubMedCentralGoogle Scholar
  4. Catani M, de Schotten MT (2012) Atlas of human brain connections. OUP OxfordGoogle Scholar
  5. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi: 10.1016/j.neuroimage.2006.01.021 CrossRefPubMedGoogle Scholar
  6. Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. doi: 10.1093/brain/aws222 PubMedCentralGoogle Scholar
  7. Fernandez-Miranda JC, Rhoton AL, Jr., Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP (2008a) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62 (6 Suppl 3):989–1026 (discussion 1026–1028). doi: 10.1227/01.neu.0000333767.05328.49
  8. Fernandez-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarez-Linera J (2008b) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108(4):764–774. doi: 10.3171/jns/2008/108/4/0764 CrossRefPubMedGoogle Scholar
  9. Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, Wang Y, Mintz A, Boada F, Schneider W, Friedlander R (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71(2):430–453. doi: 10.1227/NEU.0b013e3182592faa CrossRefPubMedGoogle Scholar
  10. Fernandez-Miranda JC, Wang Y, Pathak S, Stefaneanu L, Verstynen T, Yeh FY (2014) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 11(4):341–352. doi: 10.1007/s00429-014-0751-7 Google Scholar
  11. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327. doi: 10.1016/j.neuroimage.2010.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hartwigsen G, Bestmann S, Ward NS, Woerbel S, Mastroeni C, Granert O, Siebner HR (2012) Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. J Neurosci 32(46):16162–16171a. doi: 10.1523/jneurosci.1010-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jang SH, Hong JH (2012) The anatomical characteristics of superior longitudinal fasciculus I in human brain: diffusion tensor tractography study. Neurosci Lett 506(1):146–148. doi: 10.1016/j.neulet.2011.10.069 CrossRefPubMedGoogle Scholar
  14. Kawamura K, Naito J (1984) Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques. Neurosci Res 1(2):89–103CrossRefPubMedGoogle Scholar
  15. Krestel H, Annoni JM, Jagella C (2013) White matter in aphasia: a historical review of the Dejerines’ studies. Brain Lang 127(3):526–532. doi: 10.1016/j.bandl.2013.05.019 CrossRefPubMedGoogle Scholar
  16. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6):854–869. doi: 10.1093/cercor/bhh186 CrossRefPubMedGoogle Scholar
  17. Maldonado IL, Moritz-Gasser S, Duffau H (2011) Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct 216(3):263–274. doi: 10.1007/s00429-011-0309-x CrossRefPubMedGoogle Scholar
  18. Margulies DS, Petrides M (2013) Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production. J Neurosci 33(42):16846–16852. doi: 10.1523/jneurosci.2259-13.2013 CrossRefPubMedGoogle Scholar
  19. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, Duffau H (2012) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. doi: 10.1007/s00429-012-0386-5 PubMedGoogle Scholar
  20. Muthusami P, James J, Thomas B, Kapilamoorthy TR, Kesavadas C (2013) Diffusion tensor imaging and tractography of the human language pathways: moving into the clinical realm. J Magn Reson Imaging. doi: 10.1002/jmri.24528 PubMedGoogle Scholar
  21. Nowinski WL (2005) The cerefy brain atlases: continuous enhancement of the electronic talairach-tournoux brain atlas. Neuroinformatics 3(4):293–300. doi: 10.1385/ni:3:4:293 CrossRefPubMedGoogle Scholar
  22. Pandya DN, Kuypers HG (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13(1):13–36CrossRefPubMedGoogle Scholar
  23. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116. doi: 10.1002/cne.902280110 CrossRefPubMedGoogle Scholar
  24. Ramayya AG, Glasser MF, Rilling JK (2010) A DTI investigation of neural substrates supporting tool use. Cereb Cortex 20(3):507–516. doi: 10.1093/cercor/bhp141 CrossRefPubMedGoogle Scholar
  25. Ramnani N (2012) Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum 11(2):366–383. doi: 10.1007/s12311-011-0272-3 CrossRefPubMedGoogle Scholar
  26. Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16(4):362–377. doi: 10.1080/09647040600620468 CrossRefPubMedGoogle Scholar
  27. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011a) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246. doi: 10.1038/nn.2905 CrossRefPubMedGoogle Scholar
  28. Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M (2011b) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1):49–59. doi: 10.1016/j.neuroimage.2010.07.055 CrossRefPubMedGoogle Scholar
  29. Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48(1):82–96. doi: 10.1016/j.cortex.2011.10.001 CrossRefPubMedGoogle Scholar
  30. Ture U, Yasargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47(2):417–426 (discussion 426–417)Google Scholar
  31. Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2012) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex. doi: 10.1093/cercor/bhs225 Google Scholar
  32. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386CrossRefPubMedGoogle Scholar
  33. Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91–99. doi: 10.1016/j.neuroimage.2011.06.021 CrossRefPubMedGoogle Scholar
  34. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635. doi: 10.1109/tmi.2010.2045126 CrossRefPubMedGoogle Scholar
  35. Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48(1):58–81. doi: 10.1016/j.cortex.2011.03.004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xuhui Wang
    • 1
    • 4
  • Sudhir Pathak
    • 2
  • Lucia Stefaneanu
    • 1
  • Fang-Cheng Yeh
    • 3
  • Shiting Li
    • 4
  • Juan C. Fernandez-Miranda
    • 1
  1. 1.Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Learning Research and Development CenterUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Neurological SurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations