Brain Structure and Function

, Volume 221, Issue 4, pp 1971–1984 | Cite as

Functional topography of the thalamocortical system in human

  • Rui Yuan
  • Xin Di
  • Paul A. Taylor
  • Suril Gohel
  • Yuan-Hsiung Tsai
  • Bharat B. Biswal
Original Article


Various studies have indicated that the thalamus is involved in controlling both cortico-cortical information flow and cortical communication with the rest of the brain. Detailed anatomy and functional connectivity patterns of the thalamocortical system are essential to understanding the cortical organization and pathophysiology of a wide range of thalamus-related neurological and neuropsychiatric diseases. The current study used resting-state fMRI to investigate the topography of the human thalamocortical system from a functional perspective. The thalamus-related cortical networks were identified by performing independent component analysis on voxel-based thalamic functional connectivity maps across a large group of subjects. The resulting functional brain networks were very similar to well-established resting-state network maps. Using these brain network components in a spatial regression model with each thalamic voxel’s functional connectivity map, we localized the thalamic subdivisions related to each brain network. For instance, the medial dorsal nucleus was shown to be associated with the default mode, the bilateral executive, the medial visual networks; and the pulvinar nucleus was involved in both the dorsal attention and the visual networks. These results revealed that a single nucleus may have functional connections with multiple cortical regions or even multiple functional networks, and may be potentially related to the function of mediation or modulation of multiple cortical networks. This observed organization of thalamocortical system provided a reference for studying the functions of thalamic sub-regions. The importance of intrinsic connectivity-based mapping of the thalamocortical relationship is discussed, as well as the applicability of the approach for future studies.


fMRI Thalamus Resting state 



This research was supported by NIH 5R01 AG032088 (BBB), DA038895 (BBB), EB000215 (JSH).

Supplementary material

429_2015_1018_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3058 kb)


  1. Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2010) The effect of model order selection in group PICA. Hum Brain Mapp 31:1207–1216PubMedGoogle Scholar
  2. Adams MM, Hof PR, Gattass R, Webster MJ, Ungerleider LG (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419:377–393PubMedCrossRefGoogle Scholar
  3. Alkonyi B, Juhasz C, Muzik O, Behen ME, Jeong JW, Chugani HT (2011) Thalamocortical connectivity in healthy children: asymmetries and robust developmental changes between ages 8 and 17 years. AJNR Am J Neuroradiol 32:962–969PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andreasen NC, Arndt S, Swayze V, Cizadlo T, Flaum M, O’Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298PubMedCrossRefGoogle Scholar
  5. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592PubMedPubMedCentralCrossRefGoogle Scholar
  7. Asanuma C, Thach WT, Jones EG (1983) Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res 286:219–235PubMedCrossRefGoogle Scholar
  8. Asanuma C, Andersen RA, Cowan WM (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol 241:357–381PubMedCrossRefGoogle Scholar
  9. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113PubMedCrossRefGoogle Scholar
  10. Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330PubMedCrossRefGoogle Scholar
  11. Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMedCrossRefGoogle Scholar
  12. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedPubMedCentralCrossRefGoogle Scholar
  13. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757PubMedCrossRefGoogle Scholar
  14. Binder JR (2012) Task-induced deactivation and the “resting” state. Neuroimage 62:1086–1091PubMedPubMedCentralCrossRefGoogle Scholar
  15. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  16. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski A-M, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li S-J, Lin C-P, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng G-J, Veijola J, Villringer A, Walter M, Wang L, Weng X-C, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang Y-F, Zhang H-Y, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, Pelegrini-Issac M, Maquet P, Benali H (2012) Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci USA 109:5856–5861PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717PubMedCrossRefGoogle Scholar
  19. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  20. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedGoogle Scholar
  21. Chang C, Metzger CD, Glover GH, Duyn JH, Heinze HJ, Walter M (2013) Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 68:93–104PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM, Glover GH, Deisseroth K, Etkin A (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci USA 110:19944–19949PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8PubMedPubMedCentralGoogle Scholar
  24. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21:1636–1644PubMedGoogle Scholar
  25. Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K (2002) Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 20:305–317PubMedCrossRefGoogle Scholar
  26. Corradi-Dell’Acqua C, Tomelleri L, Bellani M, Rambaldelli G, Cerini R, Pozzi-Mucelli R, Balestrieri M, Tansella M, Brambilla P (2012) Thalamic-insular dysconnectivity in schizophrenia: evidence from structural equation modeling. Hum Brain Mapp 33:740–752PubMedCrossRefGoogle Scholar
  27. Coull JT, Frith CD, Frackowiak RS, Grasby PM (1996) A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34:1085–1095PubMedCrossRefGoogle Scholar
  28. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Witte L, Brouns R, Kavadias D, Engelborghs S, De Deyn PP, Marien P (2011) Cognitive, affective and behavioural disturbances following vascular thalamic lesions: a review. Cortex 47:273–319PubMedCrossRefGoogle Scholar
  30. Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front Hum Neurosci 7:493PubMedPubMedCentralGoogle Scholar
  31. Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476PubMedCrossRefGoogle Scholar
  32. Dormal V, Dormal G, Joassin F, Pesenti M (2012) A common right fronto-parietal network for numerosity and duration processing: an fMRI study. Hum Brain Mapp 33:1490–1501PubMedCrossRefGoogle Scholar
  33. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152PubMedCrossRefGoogle Scholar
  34. Eckert U, Metzger CD, Buchmann JE, Kaufmann J, Osoba A, Li M, Safron A, Liao W, Steiner J, Bogerts B, Walter M (2012) Preferential networks of the mediodorsal nucleus and centromedian-parafascicular complex of the thalamus—a DTI tractography study. Hum Brain Mapp 33:2627–2637PubMedCrossRefGoogle Scholar
  35. Engstrom M, Landtblom AM, Karlsson T (2013) Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits. Front Hum Neurosci 7:140PubMedPubMedCentralCrossRefGoogle Scholar
  36. Exner C, Weniger G, Irle E (2001) Implicit and explicit memory after focal thalamic lesions. Neurology 57:2054–2063PubMedCrossRefGoogle Scholar
  37. Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11:429–442PubMedCrossRefGoogle Scholar
  38. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  39. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedPubMedCentralCrossRefGoogle Scholar
  40. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6:218–229PubMedCrossRefGoogle Scholar
  41. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302PubMedCrossRefGoogle Scholar
  42. Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285PubMedCrossRefGoogle Scholar
  43. Gili T, Saxena N, Diukova A, Murphy K, Hall JE, Wise RG (2013) The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci 33:4024–4031PubMedPubMedCentralCrossRefGoogle Scholar
  44. Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560PubMedCrossRefGoogle Scholar
  45. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedPubMedCentralCrossRefGoogle Scholar
  46. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642PubMedPubMedCentralCrossRefGoogle Scholar
  47. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437PubMedPubMedCentralCrossRefGoogle Scholar
  48. Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. Trends Neurosci 23:35–39PubMedCrossRefGoogle Scholar
  49. Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175PubMedCrossRefGoogle Scholar
  50. Guldin WO, Markowitsch HJ (1983) Cortical and thalamic afferent connections of the insular and adjacent cortex of the rat. J Comp Neurol 215:135–153PubMedCrossRefGoogle Scholar
  51. Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist 7:315–324PubMedCrossRefGoogle Scholar
  52. Hellyer PJ, Shanahan M, Scott G, Wise RJS, Sharp DJ, Leech R (2014) The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J Neurosci 34:451–461PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jeon HA, Anwander A, Friederici AD (2014) Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: high-resolution functional imaging and structural connectivity. J Neurosci 34:9202–9212PubMedCrossRefGoogle Scholar
  54. Johnson MD, Ojemann GA (2000) The role of the human thalamus in language and memory: evidence from electrophysiological studies. Brain Cogn 42:218–230PubMedCrossRefGoogle Scholar
  55. Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345PubMedCrossRefGoogle Scholar
  56. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601PubMedCrossRefGoogle Scholar
  57. Jones EG (2007) The thalamus, 1st edn. Cambridge university press, CambridgeGoogle Scholar
  58. Jones EG (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann N Y Acad Sci 1157:10–23PubMedCrossRefGoogle Scholar
  59. Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154:349–377PubMedCrossRefGoogle Scholar
  60. Kaufman EF, Rosenquist AC (1985) Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res 335:257–279PubMedCrossRefGoogle Scholar
  61. Kievit J, Kuypers HG (1975) Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res 85:261–266PubMedCrossRefGoogle Scholar
  62. Kim D-J, Park B, Park H-J (2013) Functional connectivity-based identification of subdivisions of the basal ganglia and thalamus using multilevel independent component analysis of resting state fMRI. Hum Brain Mapp 34:1371–1385PubMedCrossRefGoogle Scholar
  63. Klein JC, Rushworth MFS, Behrens TEJ, Mackay CE, de Crespigny AJ, D’Arceuil H, Johansen-Berg H (2010) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 51:555–564PubMedPubMedCentralCrossRefGoogle Scholar
  64. Koralek KA, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351PubMedCrossRefGoogle Scholar
  65. Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Szekely G (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49:2053–2062PubMedCrossRefGoogle Scholar
  66. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–191PubMedCrossRefGoogle Scholar
  67. LaBerge D (1995) Attentional processing: The brain’s art of mindfulness, 2nd edn. Harvard University Press, CambridgeCrossRefGoogle Scholar
  68. LaBerge D, Buchsbaum MS (1990) Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci 10:613–619PubMedGoogle Scholar
  69. Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343PubMedCrossRefGoogle Scholar
  70. Li C, Chen K, Han H, Chui D, Wu J (2012) An FMRI study of the neural systems involved in visually cued auditory top-down spatial and temporal attention. PLoS One 7(11):e49948Google Scholar
  71. Liu H, Stufflebeam SM, Sepulcre J, Hedden T, Buckner RL (2009) Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc Natl Acad Sci USA 106:20499–20503PubMedPubMedCentralCrossRefGoogle Scholar
  72. Llinas RR, Pare D (1991) Of dreaming and wakefulness. Neuroscience 44:521–535PubMedCrossRefGoogle Scholar
  73. Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD (2000) Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12:582–587PubMedCrossRefGoogle Scholar
  74. Marchetti C, Carey D, Della Sala S (2005) Crossed right hemisphere syndrome following left thalamic stroke. J Neurol 252:403–411PubMedCrossRefGoogle Scholar
  75. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22(18):8117–8132PubMedGoogle Scholar
  76. Metzger CD, Eckert U, Steiner J, Sartorius A, Buchmann JE, Stadler J, Tempelmann C, Speck O, Bogerts B, Abler B, Walter M (2010) High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei. Front Neuroanat 4:138PubMedPubMedCentralCrossRefGoogle Scholar
  77. Metzger CD, van der Werf YD, Walter M (2013) Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging-from animal anatomy to in vivo imaging in humans. Front Neurosci 7:24PubMedPubMedCentralCrossRefGoogle Scholar
  78. Miller JW, Benevento LA (1979) Demonstration of a direct projection from the intralaminar central lateral nucleus to the primary visual cortex. Neurosci Lett 14:229–234PubMedCrossRefGoogle Scholar
  79. Mitchell AS, Chakraborty S (2013) What does the mediodorsal thalamus do? Front Syst Neurosci 7:37PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mitchell AS, Browning PG, Baxter MG (2007) Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys. J Neurosci 27:11289–11295PubMedPubMedCentralCrossRefGoogle Scholar
  81. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630PubMedCrossRefGoogle Scholar
  82. Mufson EJ, Mesulam MM (1984) Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J Comp Neurol 227:109–120PubMedCrossRefGoogle Scholar
  83. Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system: a synopsis and atlas. 4th edn. Springer Science & Business MediaGoogle Scholar
  84. Oke A, Keller R, Mefford I, Adams RN (1978) Lateralization of norepinephrine in human thalamus. Science 200:1411–1413PubMedCrossRefGoogle Scholar
  85. O’Muircheartaigh J, Vollmar C, Traynor C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Clustering probabilistic tractograms using independent component analysis applied to the thalamus. Neuroimage 54:2020–2032PubMedPubMedCentralCrossRefGoogle Scholar
  86. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  87. Popken GJ, Bunney WE, Potkin SG, Jones EG (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280PubMedPubMedCentralCrossRefGoogle Scholar
  88. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67:735–748PubMedPubMedCentralCrossRefGoogle Scholar
  89. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31PubMedCrossRefGoogle Scholar
  91. Romanski LM, Giguere M, Bates JF, Goldman-Rakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379:313–332PubMedCrossRefGoogle Scholar
  92. Roux F, Wibral M, Singer W, Aru J, Uhlhaas PJ (2013) The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J Neurosci 33:17827–17835PubMedPubMedCentralCrossRefGoogle Scholar
  93. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J (2011) Emotional perception: meta-analyses of face and natural scene processing. Neuroimage 54:2524–2533PubMedCrossRefGoogle Scholar
  96. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedPubMedCentralCrossRefGoogle Scholar
  97. Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068PubMedGoogle Scholar
  98. Sherman SM, Guillery RW (2013) Functional connections of cortical areas: a new view from the thalamus. MIT Press, CambridgeCrossRefGoogle Scholar
  99. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98PubMedCrossRefGoogle Scholar
  100. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stevens MC, Pearlson GD, Calhoun VD (2009) Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp 30:2356–2366PubMedCrossRefGoogle Scholar
  103. Theyel BB, Llano DA, Sherman SM (2010) The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci 13:84–88PubMedPubMedCentralCrossRefGoogle Scholar
  104. Traynor C, Heckemann RA, Hammers A, O’Muircheartaigh J, Crum WR, Barker GJ, Richardson MP (2010) Reproducibility of thalamic segmentation based on probabilistic tractography. Neuroimage 52:69–85PubMedCrossRefGoogle Scholar
  105. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321PubMedPubMedCentralCrossRefGoogle Scholar
  106. Van Essen DC, Newsome WT, Maunsell JH, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244:451–480PubMedCrossRefGoogle Scholar
  107. Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207PubMedCrossRefGoogle Scholar
  108. Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270PubMedCrossRefGoogle Scholar
  109. Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M, Heinze HJ, Bogerts B, Northoff G (2008) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40:1482–1494PubMedCrossRefGoogle Scholar
  110. Watanabe Y, Funahashi S (2004) Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. J Neurophysiol 92:1756–1769PubMedCrossRefGoogle Scholar
  111. Winer JA, Wenstrup JJ, Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. J Comp Neurol 319:172–190PubMedCrossRefGoogle Scholar
  112. Xiao D, Barbas Helen (2004) Circuits through prefrontal cortex, basal ganglia, and ventral anterior nucleus map pathways beyond motor control. Thalamus Related Systems 2:325–343CrossRefGoogle Scholar
  113. Xiao D, Zikopoulos B, Barbas H (2009) Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience 161:1067–1081PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yang Z, Chang C, Xu T, Jiang L, Handwerker DA, Castellanos FX, Milham MP, Bandettini PA, Zuo X-N (2014) Connectivity trajectory across lifespan differentiates the precuneus from the default network. Neuroimage 89:45–56PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMedCrossRefGoogle Scholar
  116. Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100:1740–1748PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 132:2579–2592PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME (2010) Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex 20:1187–1194PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zikopoulos B, Barbas H (2006) Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci 26:7348–7361PubMedCrossRefGoogle Scholar
  120. Zou Q, Long X, Zuo X, Yan C, Zhu C, Yang Y, Liu D, He Y, Zang Y (2009) Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: a resting-state fMRI study. Hum Brain Mapp 30:3066–3078PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49:2163–2177PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rui Yuan
    • 1
    • 6
  • Xin Di
    • 1
  • Paul A. Taylor
    • 2
    • 3
  • Suril Gohel
    • 1
  • Yuan-Hsiung Tsai
    • 4
  • Bharat B. Biswal
    • 1
    • 5
  1. 1.Department of Biomedical Engineering, New Jersey Institute of TechnologyUniversity HeightsNewarkUSA
  2. 2.MRC/UCT Medical Imaging Research Unit, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
  3. 3.African Institute for Mathematical SciencesMuizenbergSouth Africa
  4. 4.Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, College of Medicine and School of Medical TechnologyChang-Gung UniversityTaoyuanTaiwan
  5. 5.Department of RadiologyRutgers, The State University of New JerseyNewarkUSA
  6. 6.Department of Electrical Engineering, New Jersey Institute of TechnologyUniversity HeightsNewarkUSA

Personalised recommendations