Brain Structure and Function

, Volume 221, Issue 3, pp 1635–1651 | Cite as

Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study

  • Alexandra Sebastian
  • Patrick Jung
  • Jonathan Neuhoff
  • Michael Wibral
  • Peter T. Fox
  • Klaus Lieb
  • Pascal Fries
  • Simon B. Eickhoff
  • Oliver Tüscher
  • Arian Mobascher
Original Article

Abstract

The right inferior frontal cortex (rIFC) is frequently activated during executive control tasks. Whereas the function of the dorsal portion of rIFC, more precisely the inferior frontal junction (rIFJ), is convergingly assigned to the attention system, the functional key role of the ventral portion, i.e., the inferior frontal gyrus (rIFG), is hitherto controversially debated. Here, we used a two-step methodical approach to clarify the differential function of rIFJ and rIFG. First, we used event-related functional magnetic resonance imaging (fMRI) during a modified stop signal task with an attentional capture condition (acSST) to delineate attentional from inhibitory motor processes (step 1). Then, we applied coordinate-based meta-analytic connectivity modeling (MACM) to assess functional connectivity profiles of rIFJ and rIFG across various paradigm classes (step 2). As hypothesized, rIFJ activity was associated with the detection of salient stimuli, and was functionally connected to areas of the ventral and dorsal attention network. RIFG was activated during successful response inhibition even when controlling for attentional capture and revealed the highest functional connectivity with core motor areas. Thereby, rIFJ and rIFG delineated largely independent brain networks for attention and motor control. MACM results attributed a more specific attentional function to rIFJ, suggesting an integrative role between stimulus-driven ventral and goal-directed dorsal attention processes. In contrast, rIFG was disclosed as a region of the motor control but not attention system, being essential for response inhibition. The current study provides decisive evidence regarding a more precise functional characterization of rIFC subregions in attention and inhibition.

Keywords

Attentional capture Functional magnetic resonance imaging Meta-analytic connectivity modeling Right inferior frontal cortex Right inferior frontal junction Stop signal task 

Supplementary material

429_2015_994_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 46 kb)
429_2015_994_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 kb)

References

  1. Aron AR (2011) From reactive to proactive and selective control: developing a Richer Model for stopping inappropriate responses. Biol Psychiatry 69:e55–e68CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26:2424–2433CrossRefPubMedGoogle Scholar
  3. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMedGoogle Scholar
  4. Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18(4):177–185. doi:10.1016/j.tics.2013.12.003 CrossRefPubMedGoogle Scholar
  5. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851CrossRefPubMedGoogle Scholar
  6. Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79CrossRefPubMedGoogle Scholar
  7. Bissett PG, Logan GD (2014) Selective stopping? Maybe not. J Exp Psychol Gen 143:455–472CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boehler CN, Appelbaum LG, Krebs RM, Chen L, Woldorff MG, Wenderoth N (2011) The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One 6:e26386CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brass M, von Cramon DY (2002) The role of the frontal cortex in task preparation. Cereb Cortex 12:908–914CrossRefPubMedGoogle Scholar
  10. Brass M, Ullsperger M, Knoesche TR, von Cramon DY, Phillips NA (2005) Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci 17:1367–1375CrossRefPubMedGoogle Scholar
  11. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Laird AR, Fox PT, Zilles K, Eickhoff SB (2013) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cai W, Leung H, Greenlee MW (2011) Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex. PLoS One 6:e20840CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chan AW, Downing PE (2011) Faces and eyes in human lateral prefrontal cortex. Front Hum, Neurosci 5Google Scholar
  14. Chatham CH, Claus ED, Kim A, Curran T, Banich MT, Munakata Y (2012) Cognitive control reflects context monitoring, not motoric stopping, in response inhibition. PLoS One 7(2):e31546CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chikazoe J, Jimura K, Asari T, Yamashita K, Morimoto H, Hirose S, Miyashita Y, Konishi S (2009) Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cereb Cortex 19:146–152CrossRefPubMedGoogle Scholar
  16. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-riven attention in the brain. Nat Rev Neurosci 3:215–229CrossRefGoogle Scholar
  17. Corbetta M, Patel G, Shulman GL (2008) The Reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324CrossRefPubMedPubMedCentralGoogle Scholar
  18. Derrfuss J, Vogt V, Fiebach C, von Cramon D, Tittgemeyer M (2012) Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction. NeuroImage 59:3829–3837CrossRefPubMedGoogle Scholar
  19. Downar J, Crawley AP, Mikulis DJ, Davis KD (2001) The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14:1256–1267CrossRefPubMedGoogle Scholar
  20. Duncan J (2013) The structure of cognition: attentional episodes in mind and brain. Neuron 80(1):35–50CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42:107–121CrossRefPubMedGoogle Scholar
  22. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TEJ (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57:938–949CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59:2349–2361CrossRefPubMedPubMedCentralGoogle Scholar
  26. Erika-Florence M, Leech R, Hampshire A (2014) A functional network perspective on response inhibition and attentional control. Nature Commun 5:4073CrossRefGoogle Scholar
  27. First M, Spitzer R, Gibbon M, Williams J (1996) Structured Clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). American Psychiatric Press Inc, Washington, DCGoogle Scholar
  28. Floden D, Stuss DT (2006) Inhibitory control is slowed in patients with right superior medial frontal damage. J Cogn Neurosci 18:1843–1849CrossRefPubMedGoogle Scholar
  29. Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3:319–321CrossRefPubMedGoogle Scholar
  30. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25:185–198CrossRefPubMedGoogle Scholar
  31. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM (2010) The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage 50:1313–1319CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus–context integration. NeuroImage 60:2389–2398CrossRefPubMedPubMedCentralGoogle Scholar
  33. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009a) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23CrossRefPubMedPubMedCentralGoogle Scholar
  34. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009b) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29:14496–14505CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ, McKay DR, Bzdok D, Laird RW, Robinson JL, Turner JA, Turkeltaub PE, Lancaster JL, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:349CrossRefPubMedPubMedCentralGoogle Scholar
  36. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of task co-activations. NeuroImage 80:505–514CrossRefPubMedPubMedCentralGoogle Scholar
  37. Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224:40–62CrossRefPubMedPubMedCentralGoogle Scholar
  38. Logan GD, Cowan W, Davis K (1984) On the ability to inhibit responses in simple and choice reaction time tasks: a model and a method. J Exp Psychol Hum Percept Perform 10(2):276–291CrossRefPubMedGoogle Scholar
  39. Mazzola L, Faillenot I, Barral FG, Mauguiere F, Peyron R (2012) Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex. Neuroimage 60(1):409–418CrossRefPubMedGoogle Scholar
  40. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. NeuroImage 25:653–660CrossRefPubMedGoogle Scholar
  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  42. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31:173–184PubMedPubMedCentralGoogle Scholar
  43. Rottschy C, Caspers S, Roski C, Reetz K, Dogan I, Schulz JB, Zilles K, Laird AR, Fox PT, Eickhoff SB (2013) Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Struct Funct 218(6):1551–1567. doi:10.1007/s00429-012-0476-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16(2):225–237. doi:10.3758/PBR.16.2.225 CrossRefPubMedGoogle Scholar
  45. Sebastian A, Pohl M, Klöppel S, Feige B, Lange T, Stahl C, Voss A, Klauer K, Lieb K, Tüscher O (2013) Disentangling common and specific neural subprocesses of response inhibition. NeuroImage 64:601–615CrossRefPubMedGoogle Scholar
  46. Sharp DJ, Bonnelle V, de Boissezon X, Beckmann CF, James SG, Patel MC, Mehta MA (2010) Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci USA 107:6106–6111CrossRefPubMedPubMedCentralGoogle Scholar
  47. Swick D, Ashley V, Turken U (2011) Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655–1665CrossRefPubMedGoogle Scholar
  48. Tabu H, Mima T, Aso T, Takahashi R, Fukuyama H (2011) Functional relevance of pre-supplementary motor areas for the choice to stop during Stop signal task. Neurosci Res 70:277–284CrossRefPubMedGoogle Scholar
  49. Treede RD, Apkarian AV, Bromm B, Greenspan JD, Lenz FA (2000) Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain 87(2):113–119CrossRefPubMedGoogle Scholar
  50. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780CrossRefPubMedGoogle Scholar
  51. Verbruggen F, Aron AR, Stevens MA, Chambers CD (2010) Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc Natl Acad Sci USA 107:13966–13971CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wittchen H, Wunderlich U, Gruschwitz S, Zaudig M (1997) SKID-I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Göttingen: HogrefeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandra Sebastian
    • 1
  • Patrick Jung
    • 1
  • Jonathan Neuhoff
    • 1
  • Michael Wibral
    • 2
  • Peter T. Fox
    • 3
    • 4
  • Klaus Lieb
    • 1
  • Pascal Fries
    • 5
  • Simon B. Eickhoff
    • 6
    • 7
  • Oliver Tüscher
    • 1
    • 8
  • Arian Mobascher
    • 1
  1. 1.Department of Psychiatry and Psychotherapy, Focus Program Translational Neuroscience (FTN)Johannes Gutenberg University Medical Center MainzMainzGermany
  2. 2.Brain Imaging Center, MEG UnitGoethe University Frankfurt/MainFrankfurt/MainGermany
  3. 3.Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioUSA
  4. 4.South Texas Veterans Health Care SystemSan AntonioUSA
  5. 5.Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurt/MainGermany
  6. 6.Institute of Clinical Neuroscience and Medical PsychologyHeinrich-Heine University DüsseldorfDüsseldorfGermany
  7. 7.Institute for Neuroscience and Medicine (INM-1)Forschungszentrum JülichJülichGermany
  8. 8.Departments of Neurology and PsychiatryAlbert-Ludwigs-University Medical Center FreiburgFreiburgGermany

Personalised recommendations