Brain Structure and Function

, Volume 221, Issue 3, pp 1321–1335 | Cite as

Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition

  • Sol Pose-Méndez
  • Eva Candal
  • Sylvie Mazan
  • Isabel Rodríguez-Moldes
Original Article


The cerebellum is present in all extant gnathostomes or jawed vertebrates, of which cartilaginous fishes represent the most ancient radiation. Since the isthmic organizer induces the formation of the cerebellum, comparative genoarchitectonic analysis on the meso-isthmo-cerebellar region of cartilaginous fishes with respect to that of jawless vertebrates could reveal why the isthmic organizer acquires the ability to induce the formation of the cerebellum in gnathostomes. In the present work we analyzed the expression pattern of a variety of genes related to the cerebellar formation and patterning (ScOtx2, ScGbx2, ScFgf8, ScLmx1b, ScIrx1, ScIrx3, ScEn2, ScPax6 and ScLhx9) by in situ hybridization, and the distribution of Pax6 protein in the developing hindbrain of the shark Scyliorhinus canicula. The genoarchitectonic code in this species revealed high degree of conservation with respect to that of other gnathostomes. This resemblance may reveal the features of the ancestral condition of the gene network operating for specification of the rostral hindbrain patterning. Accordingly, the main subdivisions of the rostral hindbrain of S. canicula could be recognized. Our results support the existence of a rhombomere 0, identified as the ScFgf8/ScGbx2/ScEn2-positive and mainly negative ScIrx3 domain just caudal to the midbrain ScIrx1/ScOtx2/ScLmx1b-positive domain. The differential ScEn2 and Pax6 expression in the rhombomere 1 revealed anterior and posterior subdivisions. Interestingly, dissimilarities between S. canicula and lampreys (jawless vertebrates) were noted in the expression of Irx, Lhx and Pax genes, which could be part of significant gene network changes through evolution that caused the emergence of the cerebellum.


Chondrichthyan Neural genoarchitecture Isthmus Midbrain–hindbrain boundary Rhombomeres 



We thank Prof. Dr. R. Anadón for the valuable comments made during the preparation of this paper and his critical reading of the manuscript. We also thank Dr. S. Ferreiro-Galve for her helpful support and contribution in some experimental procedures. This work was supported by grants from the Spanish Dirección General de Investigación-FEDER (BFU2010-15816), the Xunta de Galicia (10PXIB200051PR, CN 2012/237), and European Community-Research Infrastructure Action under the FP7 “Capacities” Specific Programme (ASSEMBLE 227799).

Conflict of interest

The authors declare that they have no conflict of interest

Ethical standard

The manuscript does not contain clinical studies or patient data.


  1. Adachi N, Takechi M, Hirai T, Kuratani S (2012) Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 14:257–276PubMedCrossRefGoogle Scholar
  2. Adams KA, Maida JM, Golden JA, Riddle RD (2000) The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 127:1857–1867PubMedGoogle Scholar
  3. Allen Developing Mouse Brain Atlas [Internet] (2009) Allen Institute for Brain Science, Seattle.
  4. Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aroca P, Puelles L (2005) Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Rev 49:179–190PubMedCrossRefGoogle Scholar
  6. Ballard WW, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267:318–336CrossRefGoogle Scholar
  7. Bellefroid EJ, Kobbe A, Gruss P, Pieler T, Gurdon JB, Papalopulu N (1998) Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J 17:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284PubMedCrossRefGoogle Scholar
  9. Bosse A, Zülch A, Becker MB, Torres M, Gómez-Skarmeta JL, Modolell J, Gruss P (1997) Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev 69:169–181PubMedCrossRefGoogle Scholar
  10. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36PubMedCrossRefGoogle Scholar
  11. Cheng CW, Hui C, Strähle U, Cheng SH (2001) Identification and expression of zebrafish Iroquois homeobox gene irx1. Dev Genes Evol 211:442–444PubMedCrossRefGoogle Scholar
  12. Cheng CW, Yan CH, Choy SW, Hui MN, Hui CC, Cheng SH (2007) Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn 236:2661–2667PubMedCrossRefGoogle Scholar
  13. Chizhikov VV, Millen KJ (2004) Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 24:5694–56703PubMedCrossRefGoogle Scholar
  14. Cohen DR, Cheng CW, Cheng SH, Hui CC (2000) Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech Dev 91:317–321PubMedCrossRefGoogle Scholar
  15. Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ (2013) Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 377:428–448PubMedCrossRefGoogle Scholar
  16. Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Da Silva C, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S (2007) Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan. PLoS ONE 2:e374PubMedPubMedCentralCrossRefGoogle Scholar
  17. Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P, Thermes C, D’Aubenton-Carafa Y, Rodriguez-Moldes I, Naylor G, Depew M, Sourdaine P, Mazan S (2009) The dogfish Scyliorhinus canicula, a reference in jawed vertebrates. In: Behringer RR, Johnson AD, Krumlauf RE (eds) Emerging model organisms. A laboratory manual, vol 1. CSHL Press, Cold Spring Harbor, pp 431–446Google Scholar
  18. Ferreiro-Galve S, Candal E, Rodríguez-Moldes I (2012a) Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. J Exp Zool B (Mol Dev Evol) 318:79–90CrossRefGoogle Scholar
  19. Ferreiro-Galve S, Rodríguez-Moldes I, Candal E (2012b) Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. J Exp Zool (Mol Dev Evol) 318:91–108CrossRefGoogle Scholar
  20. Friedman M, Brazeau MD (2013) A jaw-dropping fossil fish. Nature 502:175–177PubMedCrossRefGoogle Scholar
  21. Germot A, Lecointre G, Plouhinec JL, Le Mentec C, Girardot F, Mazan S (2001) Structural evolution of Otx genes in craniates. Mol Biol Evol 18:1668–1678PubMedCrossRefGoogle Scholar
  22. Glavic A, Gómez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain–hindbrain boundary formation. Development 129:1609–1621PubMedGoogle Scholar
  23. Gómez-Skarmeta JL, Modolell J (2002) Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12:403–408PubMedCrossRefGoogle Scholar
  24. Green MJ, Wingate RJ (2014) Developmental origins of diversity in cerebellar output nuclei. Neural Dev 9:1PubMedPubMedCentralCrossRefGoogle Scholar
  25. Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ (2014) Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 141:389–398PubMedPubMedCentralCrossRefGoogle Scholar
  26. Guo C, Qiu HY, Huang Y, Chen H, Yang RQ, Chen SD, Johnson RL, Chen ZF, Ding YQ (2007) Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317–325PubMedCrossRefGoogle Scholar
  27. Haldin CE, Nijjar S, Massé K, Barnett MW, Jones EA (2003) Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int J Dev Biol 47:253–262PubMedGoogle Scholar
  28. Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT (2009) Expression of patched, prdm1 and engrailed in the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 11:27–40PubMedCrossRefGoogle Scholar
  29. Hidalgo-Sánchez M, Millet S, Simeone A, Alvarado-Mallart RM (1999) Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech Dev 81:175–178PubMedCrossRefGoogle Scholar
  30. Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart RM (2005a) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Rev 49:134–149PubMedCrossRefGoogle Scholar
  31. Hidalgo-Sánchez M, Martínez de la Torre M, Alvarado-Mallart RM, Puelles L (2005b) A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. J Comp Neurol 483:17–29PubMedCrossRefGoogle Scholar
  32. Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373PubMedCrossRefGoogle Scholar
  33. Holland LZ (2013) Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol 24:101–109PubMedCrossRefGoogle Scholar
  34. Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav Evol 72:91–105PubMedCrossRefGoogle Scholar
  35. Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4:27PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ikuta T, Saiga H (2007) Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain–hindbrain boundary region. Dev Biol 312:631–643PubMedCrossRefGoogle Scholar
  37. Inoue F, Parvin MS, Yamasu K (2008) Transcription of fgf8 is regulated by activating and repressive cis-elements at the midbrain–hindbrain boundary in zebrafish embryos. Dev Biol 316:471–486PubMedCrossRefGoogle Scholar
  38. Irimia M, Piñeiro C, Maeso I, Gómez-Skarmeta JL, Casares F, García-Fernández J (2010) Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizar. EvoDevo 1:7PubMedPubMedCentralCrossRefGoogle Scholar
  39. Janvier P (2008) The brain in the early fossil jawless vertebrates: evolutionary information from an empty nutshell. Brain Res Bull 75:314–318PubMedCrossRefGoogle Scholar
  40. Jászai J, Reifers F, Picker A, Langenberg T, Brand M (2003) Isthmus-to-midbrain transformation in the absence of midbrain–hindbrain organizer activity. Development 130:6611–6623PubMedCrossRefGoogle Scholar
  41. Jiménez-Guri E, Pujades C (2011) An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution. Evol Dev 13:38–46PubMedCrossRefGoogle Scholar
  42. Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741PubMedCrossRefGoogle Scholar
  43. Kerner P, Ikmi A, Coen D, Vervoort M (2009) Evolutionary history of the iroquois/Irx genes in metazoans. BMC Evol Biol 9:74PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kikuta H, Kanai M, Ito Y, Yamasu K (2003) gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228:433–450PubMedCrossRefGoogle Scholar
  45. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  46. Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93PubMedGoogle Scholar
  47. Koenig SF, Brentle S, Hamdi K, Fichtner D, Wedlich D, Gradl D (2010) En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. Dev Biol 340:318–328PubMedCrossRefGoogle Scholar
  48. Kuratani S, Horigome N (2000) Developmental morphology of branchiomeric nerves in a catshark, Scylorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells. Zool Sci 17:893–909CrossRefGoogle Scholar
  49. Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B Biol Sci 356:1615–1632PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34:175–183PubMedCrossRefGoogle Scholar
  51. Lannoo MJ, Hawkes R (1997) A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci Lett 237:53–55PubMedCrossRefGoogle Scholar
  52. Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC (2003) The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain–hindbrain boundary in mice. Mol Cell Biol 23:8216–8225PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lekven AC, Buckles GR, Kostakis N, Moon RT (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain–hindbrain boundary. Dev Biol 254:172–187PubMedCrossRefGoogle Scholar
  54. Liu A, Joyner AL (2001) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181–191PubMedGoogle Scholar
  55. Liu A, Losos K, Joyner AL (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126:4827–4838PubMedGoogle Scholar
  56. Liu ZR, Shi M, Hu ZL, Zheng MH, Du F, Zhao G, Ding YQ (2010) A refined map of early gene expression in the dorsal rhombomere 1 of mouse embryos. Brain Res Bull 82:74–82PubMedCrossRefGoogle Scholar
  57. Lu J, Zhu M, Long JA, Zhao W, Senden TJ, Jia L, Quiao T (2012) The earliest known stem-tetrapod from the Lower Devonian of China. Nat Commun 3:1160PubMedCrossRefGoogle Scholar
  58. Marín F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37PubMedCrossRefGoogle Scholar
  59. Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247PubMedCrossRefGoogle Scholar
  60. Martínez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 44:367–371Google Scholar
  61. Martínez S, Andreu A, Mecklenburg N, Echevarría D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18PubMedPubMedCentralCrossRefGoogle Scholar
  62. Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinasecascade, is involved in cerebellum formation. Nat Neurosci 7:605–612PubMedCrossRefGoogle Scholar
  63. Matsuura M, Nishihara H, Onimaru K, Kokubo N, Kuraku S, Kusakabe R, Okada N, Kuratani S, Tanaka M (2008) Identification of four Engrailed genes in the Japanese lamprey, Lethenteron japonicum. Dev Dyn 237:1581–1589PubMedCrossRefGoogle Scholar
  64. Mazan S, Jaillard D, Baratte B, Janvier P (2000) Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev 2:186–193PubMedCrossRefGoogle Scholar
  65. Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29:11377–11384PubMedCrossRefGoogle Scholar
  66. Montgomery JC, Bodznick D, Yopak KE (2012) The cerebellum and cerebellum-like structures of cartilaginous fishes. Brain Behav Evol 80:152–165PubMedCrossRefGoogle Scholar
  67. Moreno N, Bachy I, Rétaux S, González A (2005) LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. J Comp Neurol 485:240–254PubMedCrossRefGoogle Scholar
  68. Moreno-Bravo JA, Perez-Balaguer A, Martinez-Lopez JE, Aroca P, Puelles L, Martinez S, Puelles E (2014) Role of Shh in the development of molecularly characterized tegmental nuclei in mouse rhombomere 1. Brain Struct Funct 219:777–792. doi: 10.1007/s00429-013-0534-6 PubMedCrossRefGoogle Scholar
  69. Mueller T, Vernier P, Wullimann MF (2006) A phylotypic stage in vertebrate brain development: gABA cell patterns in zebrafish compared with mouse. J Comp Neurol 494:620–634PubMedCrossRefGoogle Scholar
  70. Murakami Y, Watanabe A (2009) Development of the central and peripheral nervous systems in the lamprey. Dev Growth Differ 51:197–205PubMedCrossRefGoogle Scholar
  71. Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128:3521–3531PubMedGoogle Scholar
  72. Murakami Y, Uchida K, Rijli FM, Kuratani S (2005) Evolution of the brain developmental plan: insights from agnathans. Dev Biol 280:249–259PubMedCrossRefGoogle Scholar
  73. Nakamura H, Sato T, Suzuki-Hirano A (2008) Isthmus organizer for mesencephalon and metencephalon. Dev Growth Differ 50(Suppl 1):S113–S118PubMedCrossRefGoogle Scholar
  74. Nieuwenhuys R (2011) The structural, functional and molecular organization of the brainstem. Front Neuroanat 5:33PubMedPubMedCentralCrossRefGoogle Scholar
  75. Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756PubMedCrossRefGoogle Scholar
  76. O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132:3163–3173PubMedPubMedCentralCrossRefGoogle Scholar
  77. Osório J, Mazan S, Rétaux S (2005) Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 288:100–112PubMedCrossRefGoogle Scholar
  78. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signaling centres. Nature 483:289–294PubMedPubMedCentralCrossRefGoogle Scholar
  79. Plouhinec JL, Leconte L, Sauka-Spengler TS, Bovolenta P, Mazan S, Saule S (2005) Comparative analysis of gnathostome Otx gene expression patterns in the developing eye: implications for the functional evolution of the multigene family. Dev Biol 278:560–575PubMedCrossRefGoogle Scholar
  80. Pose-Méndez S, Candal E, Adrio F, Rodríguez-Moldes I (2014) Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol 522:131–168PubMedCrossRefGoogle Scholar
  81. Puelles L, Ferrán JL (2012) Concept of neural genoarchitecture and its genomic fundament. Front Neuroanat 6:47PubMedPubMedCentralCrossRefGoogle Scholar
  82. Puelles L, Marín F, MartínezdelaTorre S, Martínez S (1995) The midbrain–hindbrain junction: a model system for brain regionalization through morphogenetic neuroepithelial interactions. In: Lonai P (ed) Towards analysis of vertebrate development. Harwood Publishers, Chur, pp 173–197Google Scholar
  83. Rétaux S, Kano S (2010) Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 50:98–109PubMedCrossRefGoogle Scholar
  84. Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M (2003) Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 120:919–936PubMedCrossRefGoogle Scholar
  85. Robertshaw E, Kiecker C (2012) Phylogenetic origins of brain organisers. Scientifica 2012:475017PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rodríguez-Moldes I, Ferreiro-Galve S, Carrera I, Sueiro C, Candal E, Mazan S, Anadón R (2008) Development of the cerebellar body in sharks: spatiotemporal relations of Pax6-expression, cell proliferation and differentiation. Neurosci Lett 432:105–110PubMedCrossRefGoogle Scholar
  87. Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S (2011) Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 5:16PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rodríguez-Seguel E, Alarcón P, Gómez-Skarmeta JL (2009) The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. Dev Biol 329:258–268PubMedCrossRefGoogle Scholar
  89. Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sato T, Nakamura H (2004) The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway. Development 131:4275–4285PubMedCrossRefGoogle Scholar
  91. Scholpp S, Lohs C, Brand M (2003) Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development 130:4881–4893PubMedCrossRefGoogle Scholar
  92. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40PubMedGoogle Scholar
  93. Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet 16:237–240PubMedCrossRefGoogle Scholar
  94. Slack JM, Holland PW, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedCrossRefGoogle Scholar
  95. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339PubMedCrossRefGoogle Scholar
  96. Steinmetz PR, Kostyuchenko RP, Fischer A, Arendt D (2011) The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev 13:72–79PubMedCrossRefGoogle Scholar
  97. Suda Y, Kurokawa D, Takeuchi M, Kajikawa E, Kuratani S, Amemiya C, Aizawa S (2009) Evolution of Otx paralogue usages in early patterning of the vertebrate head. Dev Biol 325:282–295PubMedCrossRefGoogle Scholar
  98. Sugahara F, Aota S, Kuraku S, Murakami Y, Takio-Ogawa Y, Hirano S, Kuratani S (2011) Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development 138:1217–1226PubMedCrossRefGoogle Scholar
  99. Sun X, Saitsu H, Shiota K, Ishibashi M (2008) Expression dynamics of the LIM-homeobox genes, Lhx1 and Lhx9, in the diencephalon during chick development. Int J Dev Biol 52:33–41PubMedCrossRefGoogle Scholar
  100. Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos-Insights into the evolution of vertebrate Hox code. Dev Biol 308:606–620PubMedCrossRefGoogle Scholar
  101. Tan JTY, Korzh V, Gong Z (1999) Expression of a zebrafish iroquois homeobox gene, Ziro3, in the midline axial structures and central nervous system. Mech Dev 87:165–168PubMedCrossRefGoogle Scholar
  102. Tanaka M, Münsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C (2002) Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416:527–531PubMedCrossRefGoogle Scholar
  103. Tomsa JM, Langeland JA (1999) Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol 207:26–37PubMedCrossRefGoogle Scholar
  104. Urbach R (2007) A procephalic territory in Drosophila exhibiting similarities and dissimilarities compared to the vertebrate midbrain/hindbrain boundary region. Neural Dev 2:23PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological histochemical and autoradiographic investigation. In: Brodal HOH et al (eds) Advances in anatomy, embryology and cell biology. Springer, Berlin, pp 5–21Google Scholar
  106. Vaage S (1973) The histogenesis of the isthmic nuclei in chick embryos (Gallus domesticus). Z Anat Entwicklungsgesch 142:283–314PubMedCrossRefGoogle Scholar
  107. Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R (2010) D-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 518:1688–1710PubMedCrossRefGoogle Scholar
  108. Wagner A (2008) Gene duplications, robustness and evolutionary innovations. BioEssays 30:367–373PubMedCrossRefGoogle Scholar
  109. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43PubMedCrossRefGoogle Scholar
  110. Waters ST, Lewandoski M (2006) A threshold requirement for Gbx2 levels in hindbrain development. Development 133:1991–2000PubMedCrossRefGoogle Scholar
  111. Watson C, Paxinos G, Puelles L (2012) The mouse nervous system. Elsevier Academic Press, LondonGoogle Scholar
  112. Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW (2011) The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 5:27PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zervas M, Millet S, Ahn S, Joyner A (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357PubMedCrossRefGoogle Scholar
  114. Zhu M, Yu X, Ahlberg PE, Choo B, Lu J, Qiao T, Qu Q, Zhao W, Jia L, Blom H, Zhu Y (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–193PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sol Pose-Méndez
    • 1
  • Eva Candal
    • 1
  • Sylvie Mazan
    • 2
  • Isabel Rodríguez-Moldes
    • 1
  1. 1.Department of Cell Biology and Ecology, CIBUS Bldg, Avda. Lope Gómez de MarzoaUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.UMR7150, UPMC Université Paris 6, CNRSUniversité Européenne de Bretagne, UMR 7150, SBRRoscoffFrance

Personalised recommendations