Brain Structure and Function

, Volume 221, Issue 2, pp 979–995 | Cite as

Considering structural connectivity in the triple code model of numerical cognition: differential connectivity for magnitude processing and arithmetic facts

  • Elise KleinEmail author
  • Julia Suchan
  • Korbinian Moeller
  • Hans-Otto Karnath
  • André Knops
  • Guilherme Wood
  • Hans-Christoph Nuerk
  • Klaus Willmes
Original Article


The current study provides a generalizable account of the anatomo-functional associations as well as the connectivity of representational codes underlying numerical processing as suggested by the triple code model (TCM) of numerical cognition. By evaluating the neural networks subserving numerical cognition in two specific and substantially different numerical tasks with regard to both grey matter localizations as well as white matter tracts we (1) considered the possibility of additional memory-related cortex areas crucial for arithmetic fact retrieval (e.g., the hippocampus); (2) specified the functional involvement of prefrontal areas in number magnitude processing, and, finally; (3) identified the connections between these anatomo-functional instantiations of the representations involved in number magnitude processing and arithmetic fact retrieval employing probabilistic fiber tracking. The resulting amendments to the TCM are summarized in a schematic update, and ideas concerning the possible functional interplay between number magnitude processing and arithmetic fact retrieval are discussed.


Diffusion tensor imaging fMRI Probabilistic fiber tracking Numerical cognition Triple code model 



This research was supported by the German Research Foundation (DFG) to Klaus Willmes (Wl 1804/6-1), Hans-Otto Karnath (KA 1258/11-1), Korbinian Moeller (MO 2525/2-1), and André Knops (KN 959/2-1) as well as by the Leibniz-Competition Fund (SAW) providing funding to Elise Klein (SAW-2014-IWM-4). We are indebted to the “Brain Imaging Facility of the Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University” for their precious help in acquiring the MRI/fMRI data.

Supplementary material

429_2014_951_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3066 kb)


  1. Addis DR, Moscovitch M, Crawley AP, McAndrews MP (2004) Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampu 14(6):752–762CrossRefGoogle Scholar
  2. Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cogn Sci 29(3):313–341CrossRefPubMedGoogle Scholar
  3. Anderson JR, Qin Y, Sohn MH, Stenger VA, Carter CS (2003) An information-processing model of the BOLD response in symbol manipulation tasks. Psychon Bull Rev 10(2):241–261CrossRefPubMedGoogle Scholar
  4. Arsalidou M, Taylor MJ (2011) Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 54:2382–2393CrossRefPubMedGoogle Scholar
  5. Ashcraft MH, Kirk EP (2001) The relationships among working memory, math anxiety, and performance. J Exp Psychol Gen 130:224–237CrossRefPubMedGoogle Scholar
  6. Atique B, Erb M, Gharabaghi A, Grodd W, Anders S (2011) Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. Neuroimage 55(4):1899–1911CrossRefPubMedGoogle Scholar
  7. Baddeley AD (1966) The influence of acoustic and semantic similarity on long-term memory for word sequences. Q J Exp Psychol 18(4):302–309CrossRefPubMedGoogle Scholar
  8. Baetens K, Ma N, Steen J, Van Overwalle F (2014) Involvement of the mentalizing network in social and non-social high construal. Soc Cogn Affect Neurosci 9:817–824CrossRefPubMedPubMedCentralGoogle Scholar
  9. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Res B 103:247–254CrossRefGoogle Scholar
  10. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29(4):1092–1105CrossRefPubMedGoogle Scholar
  11. Cansino S, Maquet P, Dolan RJ, Rugg MD (2002) Brain activity underlying encoding and retrieval of source memory. Cereb Cortex 10:1048–1056CrossRefGoogle Scholar
  12. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448CrossRefPubMedGoogle Scholar
  13. Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58(2):362–380CrossRefPubMedGoogle Scholar
  14. Catani M, Thiebaut de Schotten M (2012) Atlas of Human Brain Connections. Oxford University PressGoogle Scholar
  15. Cho S, Metcalfe AWS, Young CB, Ryali S, Geary DC, Menon V (2012) Hippocampal-prefrontal engagement and dynamic causal interactions in the maturation of children’s fact retrieval. J Cogn Neurosci 24:1849–1866CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dehaene S, Cohen L (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120Google Scholar
  17. Dehaene S, Cohen L (1997) Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33:219–250CrossRefPubMedGoogle Scholar
  18. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506CrossRefPubMedGoogle Scholar
  19. Delazer M, Domahs F, Bartha L, Brenneis C, Lochy A, Trieb T, Benke T (2003) Learning complex arithmetic—a fMRI study. Cogn Brain Res 18:76–88CrossRefGoogle Scholar
  20. Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335CrossRefPubMedGoogle Scholar
  21. Eger E, Sterzer P, Russ MO, Giraud AL, Kleinschmidt A (2003) A supramodal number representation in human intraparietal cortex. Neuron 37:719–725CrossRefPubMedGoogle Scholar
  22. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12:388–396CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grabner RH, Ansari D, Koschutnig K, Reishofer G, Ebner F, Neuper C (2009) To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia 47:604–608CrossRefPubMedGoogle Scholar
  24. Imbo I, Vandierendonck A, De Rammelaere S (2007a) The role of working memory in the carry operation of mental arithmetic: number and value of the carry. Q J Exp Psychol 60:708–731CrossRefGoogle Scholar
  25. Imbo I, Vandierendonck A, Vergauwe E (2007b) The role of working memory in carrying and borrowing. Psychol Res 71:467–483CrossRefPubMedGoogle Scholar
  26. Ischebeck A, Zamarian L, Egger K, Schocke M, Delazer M (2007) Imaging early practice effects in arithmetic. NeuroImage 36:993–1003CrossRefPubMedGoogle Scholar
  27. Klein E, Nuerk HC, Wood G, Knops A, Willmes K (2009) The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate How different processes work together in multi-digit addition. Brain Cogn 2:369–381CrossRefGoogle Scholar
  28. Klein E, Moeller K, Nuerk HC, Willmes K (2010) On the cognitive foundations of basic auditory number processing. Behav Brain Funct 6:42CrossRefPubMedPubMedCentralGoogle Scholar
  29. Klein E, Moeller K, Glauche V, Weiller C, Willmes K (2013) Processing pathways in mental arithmetic—evidence from probabilistic fiber tracking. PLoS ONE 8(1):e55455CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kong J, Wang C, Kwong K, Vangel M, Chuac E, Gollub R (2005) The neural substrate of arithmetic operations and procedure complexity. Cogn Brain Res 22:397–405CrossRefGoogle Scholar
  31. Kreher BW, Schnell S, Mader I, Ilyasov KA, Hennig J, Kiselev V, Saur D (2008) Connecting and merging fibres: pathway extraction by combining probability maps. NeuroImage 43:81–89CrossRefPubMedGoogle Scholar
  32. Krueger F, Landgraf S, van der Meer E, Deshpande G, Hu X (2011) Effective connectivity of the multiplication network: a functional MRI and multivariate Granger Causality Mapping study. Hum Brain Mapp 32(9):1419–1431. doi: 10.1002/hbm.21119 CrossRefPubMedGoogle Scholar
  33. LeFevre JA, Sadesky GS, Bisanz J (1996) Selection of procedures in mental addition: reassessing the problem size effect in adults. J Exp Psychol Learn Mem Cogn 22:216–230CrossRefGoogle Scholar
  34. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42:225–238CrossRefPubMedGoogle Scholar
  35. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:58–65Google Scholar
  36. Montaldi D, Mayes AR (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20(11):1291–1314CrossRefPubMedGoogle Scholar
  37. Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston K, Frackowiak RSJ (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129:1844–1858CrossRefPubMedPubMedCentralGoogle Scholar
  38. Oishi K, Faria AV, Zijl PCM, Mori S (2011) MRI atlas of the human white matter, 2nd edn. Academic Press, New YorkGoogle Scholar
  39. Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Res Imaging 18:242–254CrossRefGoogle Scholar
  40. Pesenti M, Thioux M, Seron X, De Volder A (2000) Neuroanatomical substrates of Arabic number processing, numerical comparison and simple addition: a PET study. J Cogn Neurosci 12(3):461–479CrossRefPubMedGoogle Scholar
  41. Piefke M, Weiss PH, Zilles K, Markowitsch HJ, Fink GR (2003) Differential remoteness and emotional tone modulate the neural correlated of autobiographical memory. Brain 126:650–668CrossRefPubMedGoogle Scholar
  42. Qin S, Cho S, Chen T, Rosenberg-Lee M, Geary DC, Menon V (2014) Su Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nat Neurosci 17:1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  43. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rosenberg-Lee M, Chang TT, Young CB, Wu S, Menon V (2011) Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study. Neuropsychologia 49(9):2592–2608CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rugg MD, Yonelinas AP (2003) Human recognition memory: a cognitive neuroscience perspective. Trends Cogn Sci 7(7):313–319CrossRefPubMedGoogle Scholar
  46. Rusconi E, Galfano G, Rebonato E, Umiltà C (2006) Bidirectional links in the network of multiplication facts. Psychol Res 70(1):32–42CrossRefPubMedGoogle Scholar
  47. Saur D, Kreher BW, Schnell S, Kuemmerer D, Kellermeyer P, Vry MS, Umarova RM, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040CrossRefPubMedPubMedCentralGoogle Scholar
  48. Saur D, Schelter B, Schnell S, Kratochvil D, Küpper H, Kellmeyer P, Kümmerer D, Klöppel S, Glauche V, Lange R, Mader W, Feess D, Timmer J, Weiller C (2010) Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage 49:3187–3197CrossRefPubMedGoogle Scholar
  49. Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18(9):2141–2157CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford Univ Press, New YorkCrossRefGoogle Scholar
  51. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61CrossRefPubMedPubMedCentralGoogle Scholar
  52. Spunt RP, Satpute AB, Lieberman MD (2011) Identifying the what, why, and how of an observed action: an fMRI study of mentalizing and mechanizing during action observation. J Cogn Neurosci 23(1):63–74CrossRefPubMedGoogle Scholar
  53. Supekar K, Swigart AG, Tenison C, Jolles DD, Rosenberg-Lee M, Fuchs L, Menon V (2013) Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proc Natl Acad Sci USA 110:8230–8235CrossRefPubMedPubMedCentralGoogle Scholar
  54. Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44:2189–2208CrossRefPubMedPubMedCentralGoogle Scholar
  55. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802CrossRefPubMedGoogle Scholar
  57. Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WY (2012) The geometric structure of the brain fiber pathways. Science 335(6076):1628–1634CrossRefPubMedPubMedCentralGoogle Scholar
  58. Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost—and what its recovery might mean. Brain Lang 118:29–39CrossRefPubMedGoogle Scholar
  59. Willmes K, Moeller K, Klein E (2014) Where numbers meet words—a common ventral network for semantic classification. Scand J Psychol 55:202–211CrossRefPubMedGoogle Scholar
  60. Wood G, Nuerk HC, Moeller K, Geppert B, Schnitker R, Weber J, Willmes K (2008) All for one but not one for all: how multiple number representations are recruited in one numerical task. Brain Res 1187:154–166CrossRefPubMedGoogle Scholar
  61. Wu SS, Chang TT, Majid A, Caspers S, Eickhoff SB, Menon V (2009) Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex 12:2930–2945CrossRefGoogle Scholar
  62. Zaitsev M, Hennig J, Ilyasov KA (2006) Geometric distortions applied to diffusion tensor imaging. Annual Meeting of the international society for magnetic resonance in medicine, SeattleGoogle Scholar
  63. Zaunmueller L, Domahs F, Dressel K, Lonnemann J, Klein E, Ischebeck A, Willmes K (2009) Rehabilitation of arithmetic fact retrieval via extensive practice: a combined fMRI and behavioural case-study. Neuropsychol Rehabil 19:422–443CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elise Klein
    • 1
    • 2
    Email author
  • Julia Suchan
    • 3
  • Korbinian Moeller
    • 1
    • 4
  • Hans-Otto Karnath
    • 3
  • André Knops
    • 5
  • Guilherme Wood
    • 6
  • Hans-Christoph Nuerk
    • 1
    • 4
  • Klaus Willmes
    • 2
  1. 1.Knowledge Media Research Center, Neurocognition LabIWM-KMRCTübingenGermany
  2. 2.Department of Neurology, Section NeuropsychologyUniversity Hospital, RWTH Aachen UniversityAachenGermany
  3. 3.Division of Neuropsychology, Center of Neurology, Hertie-Institute of Clinical Brain ResearchUniversity of TuebingenTübingenGermany
  4. 4.Institute of PsychologyEberhard Karls UniversityTübingenGermany
  5. 5.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany
  6. 6.Institute of PsychologyKarl-Franzens-University of GrazGrazAustria

Personalised recommendations