Brain Structure and Function

, Volume 221, Issue 2, pp 941–954 | Cite as

Altered functional connectivity networks in acallosal and socially impaired BTBR mice

  • Francesco Sforazzini
  • Alice Bertero
  • Luca Dodero
  • Gergely David
  • Alberto Galbusera
  • Maria Luisa Scattoni
  • Massimo Pasqualetti
  • Alessandro GozziEmail author
Original Article


Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC.


fMRI Connectivity Autism Corpus callosum BTBR Mouse retrograde tracing 



The study was funded by the Istituto Italiano di Tecnologia, and supported by Italian Ministry of Health “Young investigators” GR3-2008 (MLS) and by a grant from the Simons Foundation (SFARI 314688, A.G.). We thank Dr. Angelo Bifone for critically reading the manuscript and Dr. E. Callaway for providing SADΔG-mCherry Rabies Virus and other reagents.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All in vivo studies were conducted in accordance with the Italian law (DL 116, 1992 Ministero della Sanità, Roma) and the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal research protocols were also reviewed and consented to by the animal care committee of the Istituto Italiano di Tecnologia (permit 2007–2012). All surgical procedures were performed under anesthesia.

Supplementary material

429_2014_948_MOESM1_ESM.tif (6.2 mb)
Figure S1 Preserved subcortical inter-hemispheric pathways in BTBR mice. Diffusion tensor tractography of subcortical inter-hemispheric in representative normo-callosal control subjects (B6, top), and in acallosal BTBR mice (bottom). Note the presence of preserved major inter-hemispheric WM projections in the anterior commissure (ac), posterior commissure (pc) and thalamus of B6 and BTBR mice (TIFF 6373 kb)
429_2014_948_MOESM2_ESM.tif (2.1 mb)
Figure S2 rsfMRI inter-hemispheric connectivity assessment using bilateral volumes of interest. (a) T statistics matrices of inter-hemispheric rsfMRI for all pairs of unilateral brain regions from an atlas-based parcellation of the mouse brain (Sforazzini et al., 2014) in B6 (top right) and BTBR mice (bottom-left), respectively. Positive and negative correlations are depicted in hot and cool colors, respectively. The matrices have been thresholded at pc = 0.05, using Bonferroni correction for multiple comparisons. (c) Matrix depicting the region pairs exhibiting statistically significant (thresholded at pc = 0.05, Bonferroni corrected) inter-strain differences in correlation strength (red indicates connectivity strength in BTBR lower than B6, blue indicates connectivity strength in BTBR greater than B6). [Abbreviations: mPFC, prefrontal cortex; OFC, orbitofrontal cortex; Cg, cingulate cortex; Cg1, cingulate cortex, area 1; Rs, retrosplenial cortex; DG, dentate gyrus of the hippocampus; pDG, posterior dentate gyrus; pHC, posterior hippocampus; Subic, subiculum; vHC, ventral hippocampus; LS, lateral septal nucleus; BF, barrel field; Amyg, amygdala; BNST, bed nuclei of the stria terminalis; Nacc, Nucleus accumbens; Cpu, caudate-putamen; GP, globus pallidus; VTA, ventral tegmental area; Th, thalamus; Hypo, hypothalamus; Fro, frontal cortex; M1, primary motor cortex; M2, secondary motor cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; Aud, auditory cortex; Vis, visual cortex; Pt, parietal association cortex; Tea, temporal association cortex; Ins, insular cortex; Pir, piriform cortex; Rhinal, rhinal cortex; InfCo, inferior colliculus; SupCo, superior colliculus] (TIFF 2139 kb)
429_2014_948_MOESM3_ESM.tif (4.1 mb)
Figure S3 BTBR show disrupted inter-hemispheric functional connectivity in frontal but not posterior cortical areas. (a) rsfMRI correlation heatmaps (T > 2, pc = 0.001) with respect to unilateral representative right hemisphere seed regions (red labeling) in normo-callosal B6 mice (left), and acallosal BTBR mice (right). Each row reports three representative coronal slices indicating voxel exhibiting significant correlation with the seed region. Slices have been arranged in a caudal-rostral manner (left-to right, and top to bottom). Not the presence of contralateral area of significant correlation in B6 mice for each of the seed, and the lack of contralateral homotopic areas in the most frontal seeds of BTBR mice (i.e. M1, Fro and Ins). [Abbreviations: Au1, primary auditory cortex; Cpu: caudate-putamen; dAc, dorsal anterior cingulate; Fro, frontal association area; Ins, insular cortex; M1, primary motor cortex, S1, somatosensory cortex; V1, primary visual cortex] (TIFF 4227 kb)
429_2014_948_MOESM4_ESM.tif (1.4 mb)
Figure S4 BTBR show increased local functional connectivity. (a) rsfMRI correlation maps indicating areas of statistically significant increased connectivity in BTBR with respect to control B6 mice (T > 1.6, pc = 0.05) in representative seed regions of the right hemisphere. Seed regions are indicated in yellow, blue indicates greater connectivity in BTBR vs. B6. (b) To quantify the effect, rsfMRI correlation strength with respect to a sphere centered in the seed has been measured (depicted in red in the maps). ** p < 0.01, *** p < 0.001, Student’s t test [Abbreviations: Au1, auditory cortex; dHC, dorsal hippocampus; vHC, ventral hippocampus; Ins, insular cortex; S1, primary somatosensory cortex]. (TIFF 1436 kb)


  1. Amodeo DA, Jones JH, Sweeney JA, Ragozzino ME (2012) Differences in BTBR T+tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behav Brain Res 227:64–72CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anagnostou E, Taylor M (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism 2:4CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badaruddin D, Andrews G, Bolte S, Schilmoeller K, Schilmoeller G, Paul L, Brown W (2007) Social and behavioral problems of children with agenesis of the corpus callosum. Child Psychiatry Hum Dev 38:287–302CrossRefPubMedGoogle Scholar
  4. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30:2393–2400CrossRefPubMedGoogle Scholar
  5. Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234CrossRefPubMedGoogle Scholar
  6. Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in a baseline resting-state network in autism. Neuro Rep 17:1687–1690Google Scholar
  7. Dichter GS, Felder JN, Green SR, Rittenberg AM, Sasson NJ, Bodfish JW (2012) Reward circuitry function in autism spectrum disorders. Soc Cogn Affect Neurosci 7:160–172CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dodero L, Damiano M, Galbusera A, Bifone A, Tsaftsaris SA, Scattoni ML, Gozzi A (2013) Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS One 8:e76655CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL, Buitelaar JK, Bekkering H (2010) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32:1013–1028CrossRefPubMedGoogle Scholar
  10. Ferrari L, Turrini G, Crestan V, Bertani S, Cristofori P, Bifone A, Gozzi A (2012) A robust experimental protocol for pharmacological fMRI in rats and mice. J Neurosci Methods 204:9–18CrossRefPubMedGoogle Scholar
  11. Frazier TW, Hardan AY (2009) A meta-analysis of the corpus callosum in autism. Biol Psychiatry 66:935–941CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gogolla N, LeBlanc J, Quast K, Südhof TC, Fagiolini M, Hensch T (2009) Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 1:172–181CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Bifone A (2007) A multimodality investigation of cerebral haemodynamics and autoregulation in phMRI. Magn Reson Imaging 25:826–833CrossRefPubMedGoogle Scholar
  14. Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Human Brain Mapping 29:839–847CrossRefPubMedPubMedCentralGoogle Scholar
  15. Han S, Tai C, Jones C, Scheuer T, Catterall W (2014) Enhancement of inhibitory neurotransmission by gabaa receptors ameliorates behavioral deficits in a mouse model of autism. Neuron 81:1282–1289CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7 Tesla. NeuroImage 56:1546–1555CrossRefPubMedGoogle Scholar
  17. Jones-Davis DM, Yang M, Rider E, Osbun NC, da Gente GJ, Li J, Katz AM, Weber MD, Sen S, Crawley J, Sherr EH (2013) Quantitative trait loci for interhemispheric commissure development and social behaviors in the BTBR T+ tf/J mouse model of autism. PLoS One 8:e61829CrossRefPubMedPubMedCentralGoogle Scholar
  18. Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kennedy DP, Courchesne E (2008) The intrinsic functional organization of the brain is altered in autism. NeuroImage 39:1877–1885CrossRefPubMedGoogle Scholar
  20. Lau YC, Hinkley LB, Bukshpun P, Strominger ZA, Wakahiro ML, Baron-Cohen S, Allison C, Auyeung B, Jeremy RJ, Nagarajan SS, Sherr EH, Marco EJ (2012) Autism traits in individuals with agenesis of the corpus callosum. J Autism Dev Disord 43:1106–1118CrossRefGoogle Scholar
  21. Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31:3776–3783CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liang Z, King J, Zhang N (2012) Intrinsic organization of the anesthetized brain. J Neurosci 32:10183–10191CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liang Z, Li T, King J, Zhang N (2013) Mapping thalamocortical networks in rat brain using resting-state functional connectivity. NeuroImage 83:237–244CrossRefPubMedGoogle Scholar
  24. Liu X, Zhu XH, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21:374–384CrossRefPubMedPubMedCentralGoogle Scholar
  25. Livy DJ, Schalomon PM, Roy M, Zacharias MC, Pimenta J, Lent R, Wahlsten D (1997) Increased axon number in the anterior commissure of mice lacking a corpus callosum. Exp Neurol 146:491–501CrossRefPubMedGoogle Scholar
  26. Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. PNAS 109:3979–3984CrossRefPubMedPubMedCentralGoogle Scholar
  27. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163CrossRefPubMedGoogle Scholar
  28. Meye BU, Ruricht O (1998) In vivo visualisation of the longitudinal callosal fascicle (Probst’s bundle) and other abnormalities in an acallosal brain. J Neurol Neurosurg Psychiatry 64:138–139CrossRefGoogle Scholar
  29. Miller VM, Gupta D, Neu N, Cotroneo A, Boulay CD, Seegal RF (2013) Novel inter-hemispheric white matter connectivity in the BTBR mouse model of autism. pp 26–33Google Scholar
  30. Mohajerani MH, McVea DA, Fingas M, Murphy TH (2010) Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30:3745–3751CrossRefPubMedGoogle Scholar
  31. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C (2009) Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47:764–772CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMedGoogle Scholar
  33. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8:1583–1601CrossRefPubMedPubMedCentralGoogle Scholar
  34. Owen JP, Li YO, Yang FG, Shetty C, Bukshpun P, Vora S, Wakahiro M, Hinkley LB, Nagarajan SS, Sherr EH (2013) Resting-state networks and the functional connectome of the human brain in agenesis of the corpus callosum. Brain Connect 3:547–562CrossRefPubMedPubMedCentralGoogle Scholar
  35. Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299CrossRefPubMedGoogle Scholar
  36. Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137:1813–1829CrossRefPubMedPubMedCentralGoogle Scholar
  37. Paxinos G, Franklin K (2003) The mouse brain in stereotaxic coordinates. Academic Press, SydneyGoogle Scholar
  38. Probst FP (1973) Congenital defects of the corpus callosum. Morphology and encephalographic appearances. Acta Radiol Suppl 331:1CrossRefPubMedGoogle Scholar
  39. Quigley M, Cordes D, Turski P, Moritz C, Haughton V, Seth R, Meyerand ME (2003) Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol 24:208–212PubMedGoogle Scholar
  40. Rancz EA, Franks KM, Schwarz MK, Pichler B, Schaefer AT, Margrie TW (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14:527–532CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ren T, Zhang J, Plachez C, Mori S, Richards LJ (2007) Diffusion tensor magnetic resonance imaging and tract-tracing analysis of probst bundle structure in netrin1- and DCC-deficient mice. J Neurosci 27:10345–10349CrossRefPubMedGoogle Scholar
  42. Rinaldi T, Perrodin C, Markram H (2008) Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Frontiers in Neural Circuits 2Google Scholar
  43. Sannino T, Gozzi A, Cerasa A, Schegga D, Manago F, Damiano M, Galbusera A, Dodero L, Tonelli D, Bifone A, Tsaftaris AS, Weinberger DR, Spalletta G, Papaleo F (2013) Sexual dimorphisms in COMT modulation of cortical anatomy and behavior in mice and humans. Cereb Cortex (ahead of print)Google Scholar
  44. Sasaki M, Nakagawa E, Sugai K, Shimizu Y, Hattori A, Nonoda Y, Sato N (2010) Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy. Brain Dev 32:776–782CrossRefPubMedGoogle Scholar
  45. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN (2008) Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One 3(8):e3067CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scattoni ML, Ricceri L, Crawley JN (2011) Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav 10:44–56CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schwarz AJ, Gass N, Sartorius A, Risterucci C, Spedding M, Schenker E, Meyer-Lindenberg A, Weber-Fahr W (2013) Anti-correlated cortical networks of intrinsic connectivity in the rat brain. Brain Connect 3:503–511CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A (2014) Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Neuroimage 15:403–415CrossRefGoogle Scholar
  49. Shevell MI (2002) Clinical and diagnostic profile of agenesis of the corpus callosum. J Child Neurol 17:895–899CrossRefGoogle Scholar
  50. Silverman JL, Tolu SS, Barkan CL, Crawley JN (2009) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. NeuropsychopharmacologyGoogle Scholar
  51. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502CrossRefPubMedPubMedCentralGoogle Scholar
  52. Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley JN (2012) Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Trans Med 4:131ra51CrossRefGoogle Scholar
  53. Silverman JL, Gastrell PT, Karras MN, Solomon M, Crawley JN (2013) Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex. doi: 10.1093/cercor/bht293
  54. Squillace M, Dodero L, Federici M, Migliarini S, Errico F, Napolitano F, Krashia P, Di Maio A, Galbusera A, Bifone A, Scattoni ML, Pasqualetti M, Mercuri NB, Usiello A, Gozzi A (2014) Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Trans Psychiatry (in press)Google Scholar
  55. Steffey MA, Brosnan RJ, Steffey EP (2003) Assessment of halothane and sevoflurane anesthesia in spontaneously breathing rats. Am J Vet Res 64:470–474CrossRefPubMedGoogle Scholar
  56. Testa-Silva G, Loebel A, Giugliano M, de Kock CPJ, Mansvelder HD, Meredith RM (2012) Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb Cortex 22:1333–1342CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tyszka JM, Kennedy DP, Adolphs R, Paul LK (2011) Intact bilateral resting-state networks in the absence of the corpus callosum. J Neurosci 31:15154–15162CrossRefPubMedPubMedCentralGoogle Scholar
  58. Uddin LQ, Menon V (2009) The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev 33:1198–1203CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58CrossRefPubMedGoogle Scholar
  60. Wahlsten D, Metten P, Crabbe JC (2003) Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res 971:47–54CrossRefPubMedGoogle Scholar
  61. Wickersham IR, Finke S, Conzelmann KK, Callaway EM (2006) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang M, Clarke AM, Crawley JN (2009) Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 29:1663–1677CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, ‘Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178Google Scholar
  64. Zhan Y, Paolicelli R, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vissosktsy A, Bifone A, Gozzi A, Ragozzino D, Gross C (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406CrossRefPubMedGoogle Scholar
  65. Zikopoulos B, Barbas H (2013) Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Frontiers in human neuroscience 7Google Scholar
  66. Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesco Sforazzini
    • 1
  • Alice Bertero
    • 1
    • 2
  • Luca Dodero
    • 3
  • Gergely David
    • 1
  • Alberto Galbusera
    • 1
  • Maria Luisa Scattoni
    • 4
  • Massimo Pasqualetti
    • 1
    • 2
  • Alessandro Gozzi
    • 1
    Email author
  1. 1.Center for Neuroscience and Cognitive Systems @ UniTnIstituto Italiano di TecnologiaRoveretoItaly
  2. 2.Department of Biology, Unit of Cell and Developmental BiologyUniversity of PisaPisaItaly
  3. 3.Istituto Italiano di Tecnologia, Pavis LabGenoaItaly
  4. 4.Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and NeurosciencesIstituto Superiore di SanitàRomeItaly

Personalised recommendations