Brain Structure and Function

, Volume 221, Issue 2, pp 879–890 | Cite as

Predictive coding for motion stimuli in human early visual cortex

  • Wouter Schellekens
  • Richard J. A. van Wezel
  • Natalia Petridou
  • Nick F. Ramsey
  • Mathijs Raemaekers
Original Article


The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausibly linked to the predictability of visual input. Using high-field functional magnetic resonance imaging (fMRI), we measured brain activation during predictable versus unpreceded motion-induced contrast changes during several motion stimuli. We found that unpreceded moving dots appearing at the trailing edge gave rise to enhanced BOLD responses, whereas predictable moving dots at the leading edge resulted in suppressed BOLD responses. Furthermore, we excluded biases in directional sensitivity, shifts in cortical stimulus representation, visuo-spatial attention and classical receptive field effects as viable alternative explanations. The results clearly indicate the presence of predictive coding mechanisms in early visual cortex for visual motion processing, underlying the construction of stable percepts out of highly dynamic visual input.


High-field fMRI Motion suppression Predictive coding Visual cortex Visual motion 



This work was supported by a grant from the Dutch Organization for Scientific Research (NWO VENI 863.09.008).


  1. Adamo M, Pun C, Pratt J, Ferber S (2008) Your divided attention, please! The maintenance of multiple attentional control sets over distinct regions in space. Cognition 107:295–303. doi: 10.1016/j.cognition.2007.07.003 CrossRefPubMedGoogle Scholar
  2. Alink A, Schwiedrzik CM, Kohler A et al (2010) Stimulus predictability reduces responses in primary visual cortex. J Neurosci 30:2960–2966. doi: 10.1523/JNEUROSCI.3730-10.2010 CrossRefPubMedGoogle Scholar
  3. Angelucci A, Levitt JB, Walton EJS et al (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646PubMedGoogle Scholar
  4. Apthorp D, Wenderoth P, Alais D (2009) Motion streaks in fast motion rivalry cause orientation-selective suppression. J Vis 9(5):1–14. doi: 10.1167/9.5.10.Introduction CrossRefGoogle Scholar
  5. Arnal LH, Wyart V, Giraud A-L (2011) Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nat Neurosci 14:797–801. doi: 10.1038/nn.2810 CrossRefPubMedGoogle Scholar
  6. Arnold DH, Thompson M, Johnston A (2007) Motion and position coding. Vision Res 47:2403–2410. doi: 10.1016/j.visres.2007.04.025 CrossRefPubMedGoogle Scholar
  7. Arnold DH, Marinovic W, Whitney D (2014) Visual motion modulates pattern sensitivity ahead, behind, and beside motion. Vision Res 98:99–106. doi: 10.1016/j.visres.2014.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373. doi: 10.1038/30735 CrossRefPubMedGoogle Scholar
  9. Clifford CWG, Mannion DJ, McDonald JS (2009) Radial biases in the processing of motion and motion-defined contours by human visual cortex. J Neurophysiol 102:2974–2981. doi: 10.1152/jn.00411.2009 CrossRefPubMedGoogle Scholar
  10. Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39:647–660. doi: 10.1016/j.neuroimage.2007.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Egner T, Monti JM, Summerfield C (2010) Expectation and surprise determine neural population responses in the ventral visual stream. J Neurosci 30:16601–16608. doi: 10.1523/JNEUROSCI.2770-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836. doi: 10.1098/rstb.2005.1622 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138. doi: 10.1038/nrn2787 CrossRefPubMedGoogle Scholar
  14. Friston KJ, Frith CD, Turner R, Frackowiak RS (1995) Characterizing evoked hemodynamics with MRI. Neuroimage 2:157–165. doi: 10.1006/nimg.1995.1018 CrossRefPubMedGoogle Scholar
  15. Geisler WS (1999) Motion streaks provide a spatial code for motion direction. Nature 400:65–69. doi: 10.1038/21886 CrossRefPubMedGoogle Scholar
  16. Gieselmann M, Thiele A (2008) Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. Eur J Neurosci 28:447–459. doi: 10.1111/j.1460-9568.2008.06358.x CrossRefPubMedGoogle Scholar
  17. Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640. doi: 10.1016/j.cub.2008.03.054 CrossRefPubMedGoogle Scholar
  18. Kastner S, Nothdurft HC, Pigarev IN (1997) Neuronal correlates of pop-out in cat striate cortex. Vision Res 37:371–376CrossRefPubMedGoogle Scholar
  19. Lam K, Kaneoke Y, Gunji A et al (2000) Magnetic response of human extrastriate cortex in the detection of coherent and incoherent motion. Neuroscience 97:1–10CrossRefPubMedGoogle Scholar
  20. Lamme AF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535CrossRefPubMedGoogle Scholar
  21. Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A: 20:1434. doi: 10.1364/JOSAA.20.001434 CrossRefGoogle Scholar
  22. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878. doi: 10.1038/nature06976 CrossRefPubMedGoogle Scholar
  23. Maloney RT, Watson TL, Clifford CWG (2014) Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity. Neuroimage 100:564–579. doi: 10.1016/j.neuroimage.2014.06.057 CrossRefPubMedGoogle Scholar
  24. Marinovic W, Arnold DH (2013) An illusory distortion of moving form driven by motion deblurring. Vision Res 88:47–54. doi: 10.1016/j.visres.2013.05.009 CrossRefPubMedGoogle Scholar
  25. Maus GW, Fischer J, Whitney D (2013) Motion-dependent representation of space in area MT+. Neuron 78:554–562. doi: 10.1016/j.neuron.2013.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  26. McKeefry DJ, Watson JD, Frackowiak RS et al (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5:1–12. doi: 10.1006/nimg.1996.0246 CrossRefPubMedGoogle Scholar
  27. Mumford D (1992) On the computational architecture of the neocortex. Biol Cybern 66:241–251CrossRefPubMedGoogle Scholar
  28. Raemaekers M, Lankheet MJM, Moorman S et al (2009) Directional anisotropy of motion responses in retinotopic cortex. Hum Brain Mapp 30:3970–3980. doi: 10.1002/hbm.20822 CrossRefPubMedGoogle Scholar
  29. Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87. doi: 10.1038/4580 CrossRefPubMedGoogle Scholar
  30. Roach NW, McGraw PV, Johnston A (2011) Visual motion induces a forward prediction of spatial pattern. Curr Biol 21:740–745. doi: 10.1016/j.cub.2011.03.031 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sasaki Y, Rajimehr R, Kim BW et al (2006) The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51:661–670. doi: 10.1016/j.neuron.2006.07.021 CrossRefPubMedGoogle Scholar
  32. Schellekens W, Van Wezel RJ, Petridou N et al (2013) Integration of motion responses underlying directional motion anisotropy in human early visual cortical areas. PLoS One 8:e67468. doi: 10.1371/journal.pone.0067468 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Spratling MW (2008) Predictive coding as a model of biased competition in visual attention. Vision Res 48:1391–1408. doi: 10.1016/j.visres.2008.03.009 CrossRefPubMedGoogle Scholar
  34. Spratling MW (2010) Predictive coding as a model of response properties in cortical area V1. J Neurosci 30:3531–3543. doi: 10.1523/JNEUROSCI.4911-09.2010 CrossRefPubMedGoogle Scholar
  35. Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc B Biol Sci 216:427–459. doi: 10.1098/rspb.1982.0085 CrossRefGoogle Scholar
  36. Van de Moortele P-F, Auerbach EJ, Olman C et al (2009) T1 weighted brain images at 7 Tesla unbiased for proton density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46:432–446. doi: 10.1016/j.neuroimage.2009.02.009.T CrossRefPubMedPubMedCentralGoogle Scholar
  37. Van Essen DC, Drury HA, Dickson J et al (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inform Assoc 8:443–459CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wacongne C, Changeux J-P, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678. doi: 10.1523/JNEUROSCI.5003-11.2012 CrossRefPubMedGoogle Scholar
  39. Waldvogel D, Van Gelderen P, Muellbacher W et al (2000) The relative metabolic demand of inhibition and excitation. Lett Nat 406:995–998CrossRefGoogle Scholar
  40. Webb BS, Ledgeway T, McGraw PV (2010) Relating spatial and temporal orientation pooling to population decoding solutions in human vision. Vision Res 50:2274–2283. doi: 10.1016/j.visres.2010.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Whitney D, Goltz HC, Thomas CG et al (2003) Flexible retinotopy: motion-dependent position coding in the visual cortex. Science 302:878–881. doi: 10.1126/science.1087839 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wouter Schellekens
    • 1
  • Richard J. A. van Wezel
    • 2
    • 3
  • Natalia Petridou
    • 4
  • Nick F. Ramsey
    • 1
  • Mathijs Raemaekers
    • 1
  1. 1.Brain Center Rudolf MagnusUMC UtrechtUtrechtThe Netherlands
  2. 2.Department of Biophysics, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Biomedical Signals and Systems, MIRAUniversity of TwenteEnschedeThe Netherlands
  4. 4.Image Sciences Institute/RadiologyUMC UtrechtUtrechtThe Netherlands

Personalised recommendations