Advertisement

Brain Structure and Function

, Volume 221, Issue 2, pp 815–838 | Cite as

Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features

  • Laura Tomás-Roca
  • Rubén Corral-San-Miguel
  • Pilar Aroca
  • Luis Puelles
  • Faustino MarínEmail author
Original Article

Abstract

The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7–r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522–545, 2000) or a stepped expression of Hox genes (Marín et al., in Dev Biol 323:230–247, 2008). In the present work, we examine the implied similar segmental organization of the mouse medulla oblongata. To this end, we analyze the expression pattern of Hox genes from groups 3 to 8, comparing them to the expression of given cytoarchitectonic and molecular markers, from mid-gestational to perinatal stages. As a result of this approach, we conclude that the mouse medulla oblongata is segmentally organized, similarly as in avian embryos. Longitudinal structures such as the nucleus of the solitary tract, the dorsal vagal motor nucleus, the hypoglossal motor nucleus, the descending trigeminal and vestibular columns, or the reticular formation appear subdivided into discrete segmental units. Additionally, our analysis identified an internal molecular organization of the migrated pontine nuclei that reflects a differential segmental origin of their neurons as assessed by Hox gene expression.

Keywords

Rhombomeres Medulla oblongata Hox Brain segmentation Neuromeres Sensory columns 

Abbreviations

5

Trigeminal motor nucleus

6

Abducens motor nucleus

6n

Abducens nerve fibers

7

Facial motor nucleus

7asc

Ascending facial nerve fibers

7g

Facial nerve genus

7n

Descending facial nerve fibers

10

Dorsal vagal motor nucleus

10n

Vagal nerve fibers

12

Hypoglossal motor nucleus

12n

Hypoglossal nerve fibers

Amb

Ambiguus motor nucleus

AP

Area postrema

DC

Dorsal cochlear nucleus

dcn

Dorsal column nuclei

ECn

External cuneate nucleus

Gi

Gigantocellular reticular nucleus

IO

Inferior olive

IRt

Intermediate reticular nucleus

LRt

Lateral reticular nucleus

MdV

Ventral medullary reticular nucleus

MdD

Dorsal medullary reticular nucleus

MVe

Medial vestibular nucleus

mlf

Medial longitudinal fascicle

PCRt

Parvicellular reticular nucleus

pd

Pyramidal decussation

Pn

Basilar pontine nuclei

PnC

Caudal pontine reticular nucleus

PnR

Pontine raphe nucleus

Po

Periolivary region

PPnR

Prepontine raphe nucleus

Pr

Prepositus nucleus

r

Rhombomere

RAmb

Retroambiguus nucleus

RMgV

Raphe magnus nucleus, ventral part

RMgD

Raphe magnus nucleus, dorsal part

Ro

Roller nucleus

ROb

Raphe obscurus nucleus

RPa

Raphe pallidus nucleus

RtTg

Reticular tegmental nucleus

RVL

Rostroventrolateral reticular nucleus

sc

Spinal cord

Sol

Nucleus of the solitary tract

Sp5I

Interpolar trigeminal nucleus

Sp5C

Caudal trigeminal nucleus

SpVe

Spinal vestibular nucleus

tz

Trapezoid body

vh

Ventral horn

Notes

Acknowledgments

We thank C. Reyes Mendoza, M. Carmen Fernández, M. Carmen Morga and Isabel Piqueras for technical assistance. This study has been supported by a contract 04548-GERM-06 from the Fundación Séneca of the Government of the Murcia Region and grant MICINN-BFU2008-04156 from the Spanish Ministry of Science and Innovation to L.P. L.T-R. and R.C–S-M were recipient of respective predoctoral fellowships from the above-mentioned Fundación Séneca contract. We also thank RZPD, imaGenes GmbH and Geneservice Ltd for providing cDNA clones; and GenePaint.org, Allen Institute for Brain Science, and The Gene Expression Nervous System Atlas (GENSAT) database projects for providing part of the images analyzed in this work. The 3A10 antibody developed by T.M. Jessell and J. Dodd was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA, USA. cDNA clones were sequenced by the Molecular Biology Lab of the SAI (Servicio de Apoyo a la Investigación) at the University of Murcia.

Conflict of interest

The authors state that no conflict of interest is involved in the present publication.

References

  1. Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 353:89–108CrossRefPubMedGoogle Scholar
  2. Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amat JA (1986) Compartimentación y dinamica neurogenética del tubo neuronal del embrion de pollo. Manifestación heterocrónica del plan estructural del neuroeje. Dissertation, University of Murcia, SpainGoogle Scholar
  4. Ashwell KW, Hardman CD, Paxinos G (2006) Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat. J Chem Neuroanat 31:81–107CrossRefPubMedGoogle Scholar
  5. Behringer RR, Crotty DA, Tennyson VM, Brinster RL, Palmiter RD, Wolgemuth DJ (1993) Sequences 5′ of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development 117:823–833PubMedGoogle Scholar
  6. Bergquist H (1952) Studies on the cerebral tube in vertebrates. The neuromeres. Acta Zool 33:117–187CrossRefGoogle Scholar
  7. Borday C, Vias C, Autran S, Thoby-Brisson M, Champagnat J, Fortin G (2006) The pre-Bötzinger oscillator in the mouse embryo. J Physiol Paris 100:284–289CrossRefPubMedGoogle Scholar
  8. Boulet AM, Capecchi MR (1996) Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev Biol 177:232–249CrossRefPubMedGoogle Scholar
  9. Breier G, Dressler GR, Gruss P (1988) Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster. EMBO J 7:1329–1336PubMedPubMedCentralGoogle Scholar
  10. Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545CrossRefPubMedGoogle Scholar
  11. Capecchi MR (1997) Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol 62:273–281CrossRefPubMedGoogle Scholar
  12. Cheung CC, Hohmann JG, Clifton DK, Steiner RA (2001) Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 103:423–432CrossRefPubMedGoogle Scholar
  13. Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118:151–162PubMedGoogle Scholar
  14. Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623CrossRefPubMedGoogle Scholar
  15. Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M (2013) Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 9:e1003249. doi: 10.1371/journal.pgen.1003249 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Díaz C, Puelles L, Marín F, Glover JC (1998) The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras. Dev Biol 202:14–28CrossRefPubMedGoogle Scholar
  17. Duchcherer M, Baghdadwala MI, Paramonov J, Wilson RJA (2013) Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis. Dev Neurobiol 73:888–898CrossRefPubMedGoogle Scholar
  18. Dun SL, Castellino SJ, Yang J, Chang JK, Dun NJ (2001) Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats. Brain Res Dev Brain Res 131:93–102CrossRefPubMedGoogle Scholar
  19. Fantin A, Vieira JM, Plein A, Maden CH, Ruhrberg C (2013) The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat Protoc 8:418–429CrossRefPubMedPubMedCentralGoogle Scholar
  20. Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218CrossRefPubMedGoogle Scholar
  21. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  22. Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435CrossRefPubMedGoogle Scholar
  23. Garel S, Garcia-Dominguez M, Charnay P (2000) Control of the migratory pathway of facial branchiomotor neurones. Development 127:5297–5307PubMedGoogle Scholar
  24. Gaufo GO, Thomas KR, Capecchi MR (2003) Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130:5191–5201CrossRefPubMedGoogle Scholar
  25. Gaunt SJ, Krumlauf R, Duboule D (1989) Mouse homeo-genes within a subfamily, Hox-1.4, -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107:131–141PubMedGoogle Scholar
  26. Gaunt SJ, Coletta PL, Pravtcheva D, Sharpe PT (1990) Mouse Hox-3.4: homeobox sequence and embryonic expression patterns compared with other members of the Hox gene network. Development 109:329–339PubMedGoogle Scholar
  27. Geisen MJ, Di Meglio T, Pasqualetti M, Ducret S, Brunet J-F, Chedotal A, Rijli F (2008) Hox paralog group 2 genes control the migration of mouse pontine neurons through Slit-Robo signaling. PLoS Biol 6(6):e142CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231:503–509CrossRefPubMedGoogle Scholar
  29. Gray PA (2013) Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 7:7. doi: 10.3389/fnana.2013.00007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gubert F, Zaverucha-do-Valle C, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2009) Radial glia-like cells persist in the adult rat brain. Brain Res 1258:43–52CrossRefPubMedGoogle Scholar
  31. Guthrie S, Butcher M, Lumsden A (1991) Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain. J Neurobiol 22:742–754CrossRefPubMedGoogle Scholar
  32. Heyman I, Faissner A, Lumsden A (1995) Cell and matrix specialisations of rhombomere boundaries. Dev Dyn 204:301–315CrossRefPubMedGoogle Scholar
  33. Hidalgo-Sánchez M, Backer S, Puelles L, Bloch-Gallego E (2012) Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol 371:215–226CrossRefPubMedGoogle Scholar
  34. His W (1904) Die Entwickelung des menschlichen Gehirns: während der ersten Monate. S. Hirzel, LeipzigGoogle Scholar
  35. Hökfelt T, Tsuruo Y, Ulfhake B, Cullheim S, Arvidsson U, Foster GA, Schultzberg M, Schalling M, Arborelius L, Freedman J (1989) Distribution of TRH-like immunoreactivity with special reference to coexistence with other neuroactive compounds. Ann N Y Acad Sci 553:76–105CrossRefPubMedGoogle Scholar
  36. Holstege JC, de Graaff W, Hossaini M, Cardona Cano S, Jaarsma D, van den Akker E, Deschamps J (2008) Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci USA 105:6338–6343CrossRefPubMedPubMedCentralGoogle Scholar
  37. Izpisúa-Belmonte JC, Dollé P, Renucci A, Zappavigna V, Falkenstein H, Duboule D (1990) Primary structure and embryonic expression pattern of the mouse Hox-4.3 homeobox gene. Development 110:733–745PubMedGoogle Scholar
  38. Jimenez-Guri E, Udina F, Colas J-F, Sharpe J, Padrón-Barthe L, Torres M, Pujades C (2010) Clonal analysis in mice underlines the importance of rhombomeric boundaries in cell movement restriction during hindbrain segmentation. PLoS One 5:e10112. doi: 10.1371/journal.pone.0010112 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kalia M, Fuxe K, Goldstein M (1985) Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J Comp Neurol 233:308–332CrossRefPubMedGoogle Scholar
  40. Källén B (1953) On the Significance of the Neuromeres and Similar Structures in Vertebrate Embryos. J Embryol Exp Morphol 1:387–392Google Scholar
  41. Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564CrossRefPubMedGoogle Scholar
  42. Kimura H, McGeer PL, Peng J-H, McGeer EG (1984) Choline acetyltransferase-containing neurons in the rat brain. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy, vol 3: classical transmitters and transmitter receptors in the CNS. Elsevier, Amsterdam, pp 51–67Google Scholar
  43. Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ (1998) Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol 391:115–132CrossRefPubMedGoogle Scholar
  44. Krumlauf R (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9:106–112CrossRefPubMedGoogle Scholar
  45. Krumlauf R, Marshall H, Studer M, Nonchev S, Sham MH, Lumsden A (1993) Hox homeobox genes and regionalisation of the nervous system. J Neurobiol 24:1328–1340CrossRefPubMedGoogle Scholar
  46. Lim TM, Jaques KF, Stern CD, Keynes RJ (1991) An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 113:227–238PubMedGoogle Scholar
  47. Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335CrossRefPubMedGoogle Scholar
  48. Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428CrossRefPubMedGoogle Scholar
  49. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115Google Scholar
  50. Mahon KA, Westphal H, Gruss P (1988) Expression of homeobox gene Hox 1.1 during mouse embryogenesis. Development 104(Suppl):187–195PubMedGoogle Scholar
  51. Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15CrossRefPubMedPubMedCentralGoogle Scholar
  52. Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769PubMedGoogle Scholar
  53. Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738CrossRefPubMedGoogle Scholar
  54. Marín F, Aroca P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247CrossRefPubMedGoogle Scholar
  55. Martínez S (2001) The isthmic organizer and brain regionalization. Int J Dev Biol 45:367–371PubMedGoogle Scholar
  56. Martínez S, Geijo E, Sánchez-Vives MV, Puelles L, Gallego R (1992) Reduced junctional permeability at interrhombomeric boundaries. Development 116:1069–1076PubMedGoogle Scholar
  57. Minamikawa T, Miyake T, Takamatsu T, Fujita S (1987) A new method of lectin histochemistry for the study of brain angiogenesis. Lectin angiography. Histochemistry 87:317–320CrossRefPubMedGoogle Scholar
  58. Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131:983–995CrossRefPubMedGoogle Scholar
  59. Neal HV (1918) Neuromeres and metameres. J Morphol 31:293–315CrossRefGoogle Scholar
  60. Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235Google Scholar
  61. Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer-Verlag, Berlin, pp 159–228CrossRefGoogle Scholar
  62. Nieuwenhuys R (2011) The structural, functional, and molecular organization of the brainstem. Front Neuroanat 5:33. doi: 10.3389/fnana.2011.00033 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, New YorkCrossRefGoogle Scholar
  64. Orr H (1887) Contribution to the embryology of the lizard; With especial reference to the central nervous system and some organs of the head; together with observations on the origin of the vertebrates. J Morphol 1:311–372CrossRefGoogle Scholar
  65. Packer AI, Crotty DA, Elwell VA, Wolgemuth DJ (1998) Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125:1991–1998PubMedGoogle Scholar
  66. Pasqualetti M, Díaz C, Renaud J-S, Rijli FM, Glover JC (2007) Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 27:9670–9681CrossRefPubMedGoogle Scholar
  67. Prin F, Serpente P, Itasaki N, Gould AP (2014) Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development 141:1492–1502CrossRefPubMedPubMedCentralGoogle Scholar
  68. Puelles L (2013) Plan of the developing vertebrate nervous system: relating embryology to the adult nervous system (prosomere model, overview of brain organization). In: Rakic P, Rubenstein J (eds) Patterning and Cell Type Specification in the Developing Cns and Pns. Elsevier, Amsterdam, pp 187–209CrossRefGoogle Scholar
  69. Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479Google Scholar
  70. Puelles L, Rubenstein JLR (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476Google Scholar
  71. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press, AmsterdamGoogle Scholar
  72. Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S (2011) Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 5:16. doi: 10.3389/fnana.2011.00016 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580Google Scholar
  74. Schughart K, Utset MF, Awgulewitsch A, Ruddle FH (1988) Structure and expression of Hox-2.2, a murine homeobox-containing gene. Proc Natl Acad Sci USA 85:5582–5586CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shimeld SM, Gaunt SJ, Coletta PL, Geada AM, Sharpe PT (1993) Spatial localisation of transcripts of the Hox-C6 gene. J Anat 183:515–523PubMedPubMedCentralGoogle Scholar
  76. Sotelo C, Bourrat F, Triller A (1984) Postnatal development of the inferior olivary complex in the rat. II. Topographic organization of the immature olivocerebellar projection. J Comp Neurol 222:177–199CrossRefPubMedGoogle Scholar
  77. Specht LA, Pickel VM, Joh TH, Reis DJ (1981a) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol 199:233–253CrossRefPubMedGoogle Scholar
  78. Specht LA, Pickel VM, Joh TH, Reis DJ (1981b) Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol 199:255–276CrossRefPubMedGoogle Scholar
  79. Stern CD, Jaques KF, Lim TM, Fraser SE, Keynes RJ (1991) Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 113:239–244PubMedGoogle Scholar
  80. Studer M (2001) Initiation of facial motoneurone migration is dependent on rhombomeres 5 and 6. Development 128:3707–3716PubMedGoogle Scholar
  81. Theiler K (1989) The house mouse: atlas of embryonic development. Springer, New YorkCrossRefGoogle Scholar
  82. Toth LE, Slawin KL, Pintar JE, Nguyen-Huu MC (1987) Region-specific expression of mouse homeobox genes in the embryonic mesoderm and central nervous system. Proc Natl Acad Sci USA 84:6790–6794CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tsuruo Y, Hökfelt T, Visser T (1987) Thyrotropin releasing hormone (TRH)-immunoreactive cell groups in the rat central nervous system. Exp Brain Res 68:213–217CrossRefPubMedGoogle Scholar
  84. Tümpel S, Wiedemann LM, Krumlauf R (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137CrossRefPubMedGoogle Scholar
  85. Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41:3–87PubMedGoogle Scholar
  86. Vivancos V, Chen P, Spassky N, Qian D, Dabdoub A, Kelley M, Studer M, Guthrie S (2009) Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  87. Vogels R, de Graaff W, Deschamps J (1990) Expression of the murine homeobox-containing gene Hox-2.3 suggests multiple time-dependent and tissue-specific roles during development. Development 110:1159–1168PubMedGoogle Scholar
  88. Watson C (2012) Hindbrain. In: Watson C, Paxinos G, Puelles L (eds) The Mouse Nervous System. Elsevier Academic Press, Amsterdan, pp 398–423CrossRefGoogle Scholar
  89. Watson C, Paxinos G (2009) Chemoarchitectonic atlas of the mouse brain. Academic Press, LondonGoogle Scholar
  90. Watson C, Kirkcaldie M, Paxinos G (2010) The Brain. An Introduction to Functional Neuroanatomy. Academic Press, LondonGoogle Scholar
  91. Wickström R, Holgert H, Lagercrantz H, Hökfelt T (2000) Perinatal distribution of galanin and galanin receptor-1 mRNA in the rat hindbrain. Brain Res Dev Brain Res 123:53–65CrossRefPubMedGoogle Scholar
  92. Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13:335–339CrossRefPubMedGoogle Scholar
  93. Wingate RJ, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122:2143–2152PubMedGoogle Scholar
  94. Yan X, Lin J, Markus A, Rolfs A, Luo J (2011) Regional expression of ADAM19 during chicken embryonic development. Dev Growth Differ 53:333–346CrossRefPubMedGoogle Scholar
  95. Zákány J, Duboule D (1999) Hox genes in digit development and evolution. Cell Tissue Res 296:19–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Tomás-Roca
    • 1
    • 2
  • Rubén Corral-San-Miguel
    • 1
  • Pilar Aroca
    • 1
  • Luis Puelles
    • 1
  • Faustino Marín
    • 1
    Email author
  1. 1.Department of Human Anatomy and Psychobiology, School of MedicineUniversity of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria)MurciaSpain
  2. 2.Department of Human Genetics, Nijmegen Center for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations