Brain Structure and Function

, Volume 221, Issue 1, pp 563–576 | Cite as

Where language meets meaningful action: a combined behavior and lesion analysis of aphasia and apraxia

  • Peter H. WeissEmail author
  • Simon D. Ubben
  • Stephanie Kaesberg
  • Elke Kalbe
  • Josef Kessler
  • Thomas Liebig
  • Gereon R. Fink
Original Article


It is debated how language and praxis are co-represented in the left hemisphere (LH). As voxel-based lesion-symptom mapping in LH stroke patients with aphasia and/or apraxia may contribute to this debate, we here investigated the relationship between language and praxis deficits at the behavioral and lesion levels in 50 sub-acute stroke patients. We hypothesized that language and (meaningful) action are linked via semantic processing in Broca’s region. Behaviorally, half of the patients suffered from co-morbid aphasia and apraxia. While 24 % (n = 12) of all patients exhibited aphasia without apraxia, apraxia without aphasia was rare (n = 2, 4 %). Left inferior frontal, insular, inferior parietal, and superior temporal lesions were specifically associated with deficits in naming, reading, writing, or auditory comprehension. In contrast, lesions affecting the left inferior frontal gyrus, premotor cortex, and the central region as well as the inferior parietal lobe were associated with apraxic deficits (i.e., pantomime, imitation of meaningful and meaningless gestures). Thus, contrary to the predictions of the embodied cognition theory, lesions to sensorimotor and premotor areas were associated with the severity of praxis but not language deficits. Lesions of Brodmann area (BA) 44 led to combined apraxic and aphasic deficits. Data suggest that BA 44 acts as an interface between language and (meaningful) action thereby supporting parcellation schemes (based on connectivity and receptor mapping) which revealed a BA 44 sub-area involved in semantic processing.


Broca’s region Brodmann areas Neuroanatomy Lesion mapping Stroke Neuropsychological assessment 



Anterior cerebral artery


Brodmann area


Family-wise error


Inferior frontal gyrus


Inferior parietal lobe


Left hemisphere


Middle cerebral artery


Montreal neurological institute


Maximum probability map


Posterior cerebral artery


Supramarginal gyrus


Statistical parametric mapping


Statistical package for the social sciences


Superior temporal gyrus


Voxel-based lesion-symptom mapping


Working memory



The authors would like to thank their colleagues of the Cognitive Neuroscience division (INM-3), especially Dr. Anna Dovern. Support from the Marga and Walter Boll Stiftung to GRF is gratefully acknowledged.


  1. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341CrossRefPubMedGoogle Scholar
  2. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd J, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space: the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56CrossRefPubMedGoogle Scholar
  3. Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8:e1000489PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bartolo A, Cubelli R, Della Sala S, Drei S (2003) Pantomimes are special gestures which rely on working memory. Brain Cogn 53:483–494CrossRefPubMedGoogle Scholar
  5. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450PubMedGoogle Scholar
  6. Binkofski F, Buccino G (2004) Motor functions of the Broca’s region. Brain Lang 89:362–369CrossRefPubMedGoogle Scholar
  7. Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127:222–229Google Scholar
  8. Bogousslavsky J, van Melle G, Regli F (1988) The Lausanne stroke registry: analysis of 1000 consecutive patients with first stroke. Stroke 19:1083–1092CrossRefPubMedGoogle Scholar
  9. Buccino G, Binkofski F, Riggio L (2004) The mirror neuron system and action recognition. Brain Lang 89:370–376CrossRefPubMedGoogle Scholar
  10. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167CrossRefPubMedGoogle Scholar
  11. Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013) Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83:174–188CrossRefPubMedGoogle Scholar
  12. De Ajuriaguerra J, Hecaen H, Angelergues R (1960) Les apraxies. Varietes cliniques et lateralisation lesionelle. Revue Neurologique 102:566–594Google Scholar
  13. De Renzi E, Motti F, Nichelli P (1980) Imitating gestures. A quantitative approach to ideomotor apraxia. Arch Neurol 37:6–10CrossRefPubMedGoogle Scholar
  14. Donkervoort M, Dekker J, Deelman BG (2006) The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes. Clin Rehabil 20:1085–1093CrossRefPubMedGoogle Scholar
  15. Dovern A, Fink GR, Saliger J, Karbe H, Koch I, Weiss PH (2011) Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. J Neurosci 31:8102–8108CrossRefPubMedGoogle Scholar
  16. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefPubMedGoogle Scholar
  17. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57:938–949PubMedCentralCrossRefPubMedGoogle Scholar
  18. Fazio P, Cantagallo A, Craighero L, D’Ausilio A, Roy AC, Pozzo T, Calzolari F, Granieri E, Fadiga L (2009) Encoding of human action in Broca’ area. Brain 132:1980–1988CrossRefPubMedGoogle Scholar
  19. Fridriksson J, Fillmore P, Guo D, Rorden C (2014) Chronic Broca’s aphasia is caused by damage to Broca’s and Wernicke’s areas. Cereb Cortex. doi: 10.1093/cercor/bhu152 PubMedGoogle Scholar
  20. Friederici AD, Bahlmann J, Heim S, Schubotz RI, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Nat Acad Sci 103:2458–2463PubMedCentralCrossRefPubMedGoogle Scholar
  21. Goldenberg G, Karnath H-O (2006) The neural basis of imitation is body part specific. J Neurosci 26:6282–6287CrossRefPubMedGoogle Scholar
  22. Goldenberg G, Spatt J (2009) The neural basis of tool use. Brain 132:1645–1655CrossRefPubMedGoogle Scholar
  23. Goldenberg G, Hermsdörfer J, Glindemann R, Rorden C, Karnath H-O (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776CrossRefPubMedGoogle Scholar
  24. Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogni Sci 9:416–423CrossRefGoogle Scholar
  25. Heim S, Eickhoff SB, Opitz B, Friederici AD (2006) BA 44 in Broca’s area supports syntactic gender decisions in language production. Neuroreport 17:1097–1101CrossRefPubMedGoogle Scholar
  26. Heim S, Eickhoff SB, Ischebeck AK, Supp G, Amunts K (2007) Modality-independent involvement of the left BA 44 during lexical decision making. Brain Struct Funct 212:95–106CrossRefPubMedGoogle Scholar
  27. Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC (2003) The essential role of Broca’s area in imitation. Eur J Neurosci 17:1123–1128CrossRefPubMedGoogle Scholar
  28. Higuchi S, Chaminade T, Imamizu H, Kawato M (2009) Shared neural correlates for language and tool use in Broca’s area. Neuroreport 20:1376–1381CrossRefPubMedGoogle Scholar
  29. Hillis AE, Wityk RJ, Barker PB, Beauchamp NJ, Gailloud P, Murphy K, Cooper O, Metter EJ (2002) Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 125:1094–1104CrossRefPubMedGoogle Scholar
  30. Kaesberg S, Fink GR, Kalbe E (2013a) Neuropsychological assessment EARLY after stroke: an overview of diagnostic instruments available in German and introduction of a new screening tool. Fortschr Neurol Psychiatr 81:482–492CrossRefPubMedGoogle Scholar
  31. Kaesberg S, Kalbe E, Finis J, Kessler J, Fink GR (2013b) Kölner neuropsychologisches screening für Schlaganfall-Patienten (KöpSS). Hogrefe Verlag, GöttingenGoogle Scholar
  32. Kalénine S, Buxbaum LJ, Coslett HB (2010) Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke. Brain 133:3269–3280PubMedCentralCrossRefPubMedGoogle Scholar
  33. Kertesz A, Ferro JM, Shewan CM (1984) Apraxia and aphasia: the functional-anatomical basis for their dissociation. Neurology 34:40–47CrossRefPubMedGoogle Scholar
  34. Kimberg DY, Coslett HB, Schwartz MF (2007) Power in voxel-based lesion-symptom mapping. J Cogn Neurosci 19:1067–1080CrossRefPubMedGoogle Scholar
  35. Kühn S, Brass M, Gallinat J (2013) Imitation and speech: commonalities within Broca’s area. Brain Struct Funct 218:1419–1427CrossRefPubMedGoogle Scholar
  36. Kümmerer D, Hartwigsen G, Kellmeyer P, Glauche V, Mader I, Klöppel S, Suchan J, Karnath H-O, Weiller C, Saur D (2013) Damage to ventral and dorsal language pathways in acute aphasia. Brain 136:619–629PubMedCentralCrossRefPubMedGoogle Scholar
  37. Laska AC, Hellblom A, Murray V, Kahan T, von Arbin M (2001) Aphasia in acute stroke and relation to outcome. J Intern Med 249:413–422CrossRefPubMedGoogle Scholar
  38. Mengotti P, Corradi-Dell’Acqua C, Negri GA, Ukmar M, Pesavento V, Rumiati RI (2013) Selective imitation impairments differentially interact with language processing. Brain 136:2602–2618CrossRefPubMedGoogle Scholar
  39. Nelissen N, Pazzaglia M, Vandenbulcke M, Sunaert S, Fannes K, Dupont P, Aglioti S, Vandenberghe R (2010) Gesture discrimination in primary progressive aphasia: the intersection between gesture and language processing pathways. J Neurosci 30:6334–6341CrossRefPubMedGoogle Scholar
  40. Nishitani N, Schürmann M, Amunts K, Hari R (2005) Broca’s region: from action to language. Physiology 20:60–69CrossRefPubMedGoogle Scholar
  41. Papagno C, Della Sala S, Basso A (1993) Ideomotor apraxia without aphasia and aphasia without apraxia: the anatomical support for a double dissociation. J Neurol Neurosurg Psychiatry 56:286–289PubMedCentralCrossRefPubMedGoogle Scholar
  42. Pazzaglia M, Smania N, Corato E, Aglioti SM (2008) Neural underpinnings of gesture discrimination in patients with limb apraxia. J Neurosci 28:3030–3041CrossRefPubMedGoogle Scholar
  43. Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11:351–360CrossRefPubMedGoogle Scholar
  44. Randerath J, Goldenberg G, Spijkers W, Li Y, Hermsdörfer J (2010) Different left brain regions are essential for grasping a tool compared with its subsequent use. Neuroimage 53:171–180CrossRefPubMedGoogle Scholar
  45. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends in Neuroscience 21:188–194CrossRefGoogle Scholar
  46. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annual Review. Neurosciences 27:169–192Google Scholar
  47. Roby-Brami A, Hermsdörfer J, Roy AC, Jacobs S (2012) A neuropsychological perspective on the link between language and praxis in modern humans. Philos Trans Royal Soc London B 367:144–160CrossRefGoogle Scholar
  48. Rogalsky C, Matchin W, Hickok G (2008) Broca’s area, sentence comprehension, and working memory: an fMRI study. Front Hum Neurosci. doi: 10.3389/neuro.09.014.2008 PubMedCentralPubMedGoogle Scholar
  49. Rumiati RI, Tessari A (2002) Imitation of novel and well-known actions. The role of short-term memory. Exp Brain Res 142:425–433CrossRefPubMedGoogle Scholar
  50. Rumiati RI, Weiss PH, Tessari A, Assmus A, Zilles K, Herzog H, Fink GR (2005) Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions. J Cogn Neurosci 17:1420–1431CrossRefPubMedGoogle Scholar
  51. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry M-S, Umarova RM, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Nat Acad Sci 105:18035–18040PubMedCentralCrossRefPubMedGoogle Scholar
  52. Saygin AP, Wilson SM, Dronkers NF, Bates E (2004) Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42:1788–1804CrossRefPubMedGoogle Scholar
  53. Schnur T, Schwartz MF, Kimberg DY, Hirshorn E, Coslett HB, Thompson-Schill SL (2009) Localizing interference during naming: convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proc Nat Acad Sci 106:322–327PubMedCentralCrossRefPubMedGoogle Scholar
  54. Schwartz MF, Faseyitan O, Kim J, Coslett HB (2012) The dorsal stream contribution to phonological retrieval in object naming. Brain 135:3799–3814PubMedCentralCrossRefPubMedGoogle Scholar
  55. Tessari A, Canessa N, Ukmar M, Rumiati RI (2007) Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain 130:1111–1126CrossRefPubMedGoogle Scholar
  56. van Schie HT, Toni I, Bekkering H (2006) Comparable mechanisms for action and language: neural systems behind intentions, goals, and means. Cortex 42:495–498CrossRefPubMedGoogle Scholar
  57. Vossel S, Weiss PH, Eschenbeck P, Saliger J, Karbe H, Fink GR (2012) The neural basis of anosognosia for spatial neglect after stroke. Stroke 43:1954–1956CrossRefPubMedGoogle Scholar
  58. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322CrossRefPubMedGoogle Scholar
  59. Weisberg LA (1988) Diagnostic classification of stroke, especially lacunes. Stroke 19:1071–1073CrossRefPubMedGoogle Scholar
  60. Weiss PH, Dohle C, Binkofski F, Schnitzler A, Freund H, Hefter H (2001) Motor impairment in patients with parietal lesions: disturbances of meaningless arm movement sequences. Neuropsychologia 39:397–405CrossRefPubMedGoogle Scholar
  61. Weiss PH, Achilles E, Moos K, Hesse MD, Sparing R, Fink GR (2013) Transcranial direct current stimulation (tDCS) of left parietal cortex facilitates gesture processing in healthy subjects. J Neurosci 33:19205–19211CrossRefPubMedGoogle Scholar
  62. Wilke M, de Haan B, Juenger H, Karnath H-O (2011) Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56:2038–2046CrossRefPubMedGoogle Scholar
  63. Willems RM, Hagoort P (2007) Neural evidence for the interplay between language, gesture and action: a review. Brain Lang 101:278–289CrossRefPubMedGoogle Scholar
  64. Willems RM, Hagoort P (2009) Broca’s region: battles are not won by ignoring half of the facts. Trends Cogn Sci 13:101CrossRefPubMedGoogle Scholar
  65. Willems RM, Özyürek A, Hagoort P (2009) Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage 47:1992–2004CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter H. Weiss
    • 1
    • 2
    Email author
  • Simon D. Ubben
    • 1
    • 2
  • Stephanie Kaesberg
    • 2
    • 3
  • Elke Kalbe
    • 3
  • Josef Kessler
    • 2
  • Thomas Liebig
    • 4
  • Gereon R. Fink
    • 1
    • 2
  1. 1.Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3)Research Center JülichJülichGermany
  2. 2.Department of NeurologyUniversity Hospital CologneCologneGermany
  3. 3.Institute of Gerontology and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Psychological GerontologyUniversity of VechtaVechtaGermany
  4. 4.Department of NeuroradiologyUniversity Hospital CologneCologneGermany

Personalised recommendations