Advertisement

Brain Structure and Function

, Volume 221, Issue 1, pp 407–419 | Cite as

Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats

  • A. F. Carvalho
  • B. A. S. Reyes
  • F. Ramalhosa
  • N. Sousa
  • E. J. Van Bockstaele
Original Article

Abstract

Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37–40) and adult (P55–60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi–Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development effects of cannabinoids on behavior.

Keywords

Medial prefrontal cortex Nucleus accumbens Cannabinoid WIN 55,212-2 Golgi staining 

Abbreviations

Acb

Nucleus accumbens

CB1r

Cannabinoid receptor type 1

CB2r

Cannabinoid receptor type 2

CNS

Central nervous system

MSNs

Medium spiny neurons

PFC

Prefrontal cortex

VTA

Ventral tegmental area

Notes

Acknowledgments

This work was supported by NIDA DA20129 (EVB).

References

  1. Anthony JC, Petronis KR (1991) Epidemiologic evidence on suspected associations between cocaine use and psychiatric disturbances. NIDA Res Monogr 110:189–210PubMedGoogle Scholar
  2. Baird B, Smallwood J, Gorgolewski KJ, Margulies DS (2013) Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. J Neurosci 33(42):16657–16665PubMedCrossRefGoogle Scholar
  3. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153(1):31–43PubMedCrossRefGoogle Scholar
  4. Bardo MT, Cain ME, Bylica KE (2006) Effect of amphetamine on response inhibition in rats showing high or low response to novelty. Pharmacol Biochem Behav 85(1):98–104PubMedCrossRefGoogle Scholar
  5. Belleau ML, Warren RA (2000) Postnatal development of electrophysiological properties of nucleus accumbens neurons. J Neurophysiol 84(5):2204–2216PubMedGoogle Scholar
  6. Biscaia M, Fernandez B, Higuera-Matas A, Miguens M, Viveros MP, Garcia-Lecumberri C, Ambrosio E (2008) Sex-dependent effects of periadolescent exposure to the cannabinoid agonist CP-55,940 on morphine self-administration behaviour and the endogenous opioid system. Neuropharmacology 54(5):863–873PubMedCrossRefGoogle Scholar
  7. Bodor AL, Katona I, Nyiri G, Mackie K, Ledent C, Hajos N, Freund TF (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25(29):6845–6856PubMedCrossRefGoogle Scholar
  8. Broadwater M, Varlinskaya EI, Spear LP (2013) Effects of voluntary access to sweetened ethanol during adolescence on intake in adulthood. Alcohol Clin Exp Res 37(6):1048–1055PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bunge SA, Wright SB (2007) Neurodevelopmental changes in working memory and cognitive control. Cur Opinion Neurobiol 17(2):243–250CrossRefGoogle Scholar
  10. Cagni P, Barros M (2013) Cannabinoid type 1 receptor ligands WIN 55,212–2 and AM 251 alter anxiety-like behaviors of marmoset monkeys in an open-field test. Behav Brain Res 240:91–94PubMedCrossRefGoogle Scholar
  11. Cain ME, Dotson WF, Bardo MT (2006) Individual differences in the effect of novel environmental stimuli prior to amphetamine self-administration in rats (Rattus norvegicus). Exp Clin Psychopharmacol 14(3):389–401PubMedCrossRefGoogle Scholar
  12. Cajal S (1995) Histology of the nervous system of man and vertebrates. Oxford University Press, New YorkGoogle Scholar
  13. Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132PubMedCentralPubMedCrossRefGoogle Scholar
  14. Carvalho AF, Van Bockstaele EJ (2011) Direct intra-accumbal infusion of a beta-adrenergic receptor antagonist abolishes WIN 55,212-2-induced aversion. Neurosci Lett 500(1):82–85PubMedCentralPubMedCrossRefGoogle Scholar
  15. Carvalho AF, Reyes AR, Sterling RC, Unterwald E, Van Bockstaele EJ (2010) Contribution of limbic norepinephrine to cannabinoid-induced aversion. Psychopharmacology 211(4):479–491PubMedCentralPubMedCrossRefGoogle Scholar
  16. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54(1–3):241–257PubMedCrossRefGoogle Scholar
  17. Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, Poulton R, Craig IW (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene × environment interaction. Biol Psychiatry 57(10):1117–1127PubMedCrossRefGoogle Scholar
  18. Castellanos D, Singh S, Thornton G, Avila M, Moreno A (2011) Synthetic cannabinoid use: a case series of adolescents. J Adolesc Health 49(4):347–349PubMedCrossRefGoogle Scholar
  19. Cerqueira JJ, Taipa R, Uylings HB, Almeida FO, Sousa N (2007) Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17(9):1998–2006PubMedCrossRefGoogle Scholar
  20. Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160(6):1041–1052PubMedCentralPubMedCrossRefGoogle Scholar
  21. Clark LR, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55(1):41–53PubMedCrossRefGoogle Scholar
  22. Crowley TJ, Macdonald MJ, Whitmore EA, Mikulich SK (1998) Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend 50(1):27–37PubMedCrossRefGoogle Scholar
  23. Cullen TJ, Walker MA, Eastwood SL, Esiri MM, Harrison PJ, Crow TJ (2006) Anomalies of asymmetry of pyramidal cell density and structure in dorsolateral prefrontal cortex in schizophrenia. Br J Psychiatry 188:26–31PubMedCrossRefGoogle Scholar
  24. Cunningham CL, Gremel CM (2006) Proximal ethanol pretreatment interferes with acquisition of ethanol-induced conditioned place preference. Pharmacol Biochem Behav 85(3):612–619PubMedCentralPubMedCrossRefGoogle Scholar
  25. Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1(4):1662–1670PubMedCrossRefGoogle Scholar
  26. Dalton VS, Wang H, Zavitsanou K (2009) HU210-induced downregulation in cannabinoid CB1 receptor binding strongly correlates with body weight loss in the adult rat. Neurochem Res 34(7):1343–1353PubMedCrossRefGoogle Scholar
  27. Dalton VS, Wang H, Zavitsanou K (2010) Cannabinoid effects on CB1 receptor density in the adolescent brain: an autoradiographic study using the synthetic cannabinoid HU210. Synapse 64(11):845–854PubMedCrossRefGoogle Scholar
  28. Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51(1):68–80PubMedCrossRefGoogle Scholar
  29. De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11:552–557PubMedCrossRefGoogle Scholar
  30. de Fonseca FR, Schneider M (2008) The endogenous cannabinoid system and drug addiction: 20 years after the discovery of the CB1 receptor. Addict Biol 13:143–146PubMedCrossRefGoogle Scholar
  31. D’Souza DC, Perry E, MacDougall L, Ammerman Y, Cooper T, Wu YT, Braley G, Gueorguieva R, Krystal JH (2004) The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29(8):1558–1572PubMedCrossRefGoogle Scholar
  32. D’Souza DC, Abi-Saab WM, Madonick S, Forselius-Bielen K, Doersch A, Braley G, Gueorguieva R, Cooper TB, Krystal JH (2005) Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 57(6):594–608PubMedCrossRefGoogle Scholar
  33. Dumitriu D, Laplant Q, Grossman YS, Dias C, Janssen WG, Russo SJ, Morrison JH, Nestler EJ (2012) Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens. J Neurosci 32(20):6957–6966PubMedCentralPubMedCrossRefGoogle Scholar
  34. Ellgren M, Artmann A, Tkalych O, Gupta A, Hansen HS, Hansen SH, Devi LA, Hurd YL (2008) Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol 18(11):826–834PubMedCentralPubMedCrossRefGoogle Scholar
  35. Falowski SM, Sharan A, Reyes BA, Sikkema C, Szot P, Van Bockstaele EJ (2011) An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery 69:1281–1290PubMedCentralPubMedCrossRefGoogle Scholar
  36. Fernández-Espejo E (2013) How does the nucleus accumbens function? Revista de Neurologia 30(9):845–849Google Scholar
  37. Fortin DA, Levine ES (2007) Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex 17(1):163–174PubMedCrossRefGoogle Scholar
  38. Fox KM, Sterling RC, Van Bockstaele EJ (2009) Cannabinoids and novelty investigation: influence of age and duration of exposure. Behav Brain Res 196(2):248–253PubMedCentralPubMedCrossRefGoogle Scholar
  39. French SJ, Totterdell D (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus. J Comp Neurol 446(2):151–165PubMedCrossRefGoogle Scholar
  40. Grant BF, Dawson DA (1997) Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. J Subst Abuse 9:103–110PubMedCrossRefGoogle Scholar
  41. Heng L, Beverley JA, Steiner H, Tseng KY (2011) Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse 65(4):278–286PubMedCentralPubMedCrossRefGoogle Scholar
  42. Henquet C, Murray R, Linszen D, van Os J (2005) The environment and schizophrenia: the role of cannabis use. Schizophr Bull 31(3):608–612PubMedCrossRefGoogle Scholar
  43. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583PubMedGoogle Scholar
  44. Hughes RN (1968) Behaviour of male and female rats with free choice of two environments differing in novelty. Anim Behav 16(1):92–96PubMedCrossRefGoogle Scholar
  45. Hurd YL, Michaelides M, Miller ML, Jutras-Aswad D (2014) Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 76(Pt B):416–424Google Scholar
  46. Jentsch JD, Andrusiak E, Tran A, Bowers MB Jr, Roth RH (1997) Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432PubMedCrossRefGoogle Scholar
  47. Kandel D, Chen K, Warner LA, Kessler RC, Grant B (1997) Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U.S. population. Drug Alcohol Depend 44:11–29PubMedCrossRefGoogle Scholar
  48. Kelly BC, Wells BE, Pawson M, Leclair A, Parsons JT, Golub SA (2013) Novel psychoactive drug use among younger adults involved in US nightlife scenes. Drug Alcohol Rev 32(6):588–593PubMedCrossRefGoogle Scholar
  49. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. NeuroImage 87:345–355PubMedCrossRefGoogle Scholar
  50. Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003) Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci USA 100:10523–10528PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kolb B, Gorny G, Limebeer CL, Parker LA (2006) Chronic treatment with delta-9-tetrahydrocannabinol alters the structure of neurons in the nucleus accumbens shell and medial prefrontal cortex of rats. Synapse 60(6):429–436PubMedCrossRefGoogle Scholar
  52. Koss WA, Belden CE, Hristov AD, Juraska JM (2014) Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse 68:61–72PubMedCrossRefGoogle Scholar
  53. Li Y, Kolb B, Robinson TE (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28:1082–1085PubMedCrossRefGoogle Scholar
  54. Li Y, Acerbo MJ, Robinson TE (2004) The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. Eur J Neurosci 20(6):1647–1654PubMedCrossRefGoogle Scholar
  55. Libersat F (2005) Maturation of dendritic architecture: lessons from insect identified neurons. J Neurobiol 64(1):11–23PubMedCrossRefGoogle Scholar
  56. Libersat F, Duch C (2004) Mechanisms of dendritic maturation. Mol Neurobiol 29(3):303–320PubMedCrossRefGoogle Scholar
  57. Lu D, He L, Xiang W, Ai WM, Cao Y, Wang XS, Pan A, Luo XG, Li Z, Yan XX (2013) Somal and dendritic development of human CA3 pyramidal neurons from midgestation to middle childhood: a quantitative Golgi study. Anat Rec (Hoboken) 296:123–132CrossRefGoogle Scholar
  58. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75(5):1357–1372PubMedCrossRefGoogle Scholar
  59. Mailleux P, Vanderhaeghen JJ (1992a) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48(3):655–668PubMedCrossRefGoogle Scholar
  60. Mailleux P, Vanderhaeghen JJ (1992b) Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci Lett 148(1–2):173–176PubMedCrossRefGoogle Scholar
  61. Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327(4):535–550PubMedCrossRefGoogle Scholar
  62. McGuinness TM, Newell D (2012) Risky recreation: synthetic cannabinoids have dangerous effects. J Psychosoc Nurs Ment Health Serv 50(8):16–18PubMedCrossRefGoogle Scholar
  63. Moore NL, Greenleaf AL, Acheson SK, Wilson WA, Swartzwelder SH, Kuhn CM (2010) Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats. J Pharmacol Exp Ther 335(2):294–301PubMedCentralPubMedCrossRefGoogle Scholar
  64. Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86(3):274–280PubMedCrossRefGoogle Scholar
  65. Mucha RF, Iversen SD (1984) Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacology 82(3):241–247PubMedCrossRefGoogle Scholar
  66. Nugent AC, Milham MP, Bain EE, Mah L, Cannon DM, Marrett S, Zarate CA, Pine DS, Price JL, Drevets WC (2006) Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. NeuroImage 30:485–497PubMedCrossRefGoogle Scholar
  67. Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046(1–2):45–54PubMedCrossRefGoogle Scholar
  68. O'Shea M, McGregor IS, Mallet PE (2006) Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol 20:611–621PubMedCrossRefGoogle Scholar
  69. O'Shea M, Singh ME, McGregor IS, Mallet PE (2004) Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 18:502–508PubMedCrossRefGoogle Scholar
  70. Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86(1):162–168PubMedCentralPubMedCrossRefGoogle Scholar
  71. Page ME, Oropeza VC, Van Bockstaele EJ (2008) Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex. Neurosci Lett 431(1):1–5PubMedCentralPubMedCrossRefGoogle Scholar
  72. Parker LA (1992) Place conditioning in a three- or four-choice apparatus: role of stimulus novelty in drug-induced place conditioning. Behav Neurosci 106(2):294–306PubMedCrossRefGoogle Scholar
  73. Pickel VM, Towle AC, Joh TH, Chan J (1988) Gamma-aminobutyric acid in the medial rat nucleus accumbens: ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents. J Comp Neurol 272(1):1–14PubMedCrossRefGoogle Scholar
  74. Philpot RM, Badanich KA, Kirstein CL (2003) Place conditioning: age-related changes in the rewarding and aversive effects of alcohol. Alcohol Clin Exp Res 27:593–599PubMedCrossRefGoogle Scholar
  75. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884PubMedCrossRefGoogle Scholar
  76. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregot IS (2008) Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33(5):1113–1126PubMedCrossRefGoogle Scholar
  77. Realini N, Rubino T, Parolaro D (2009) Neurobiological alterations at adult age triggered by adolescent exposure to cannabinoids. Pharmacol Res 60(2):132–138PubMedCrossRefGoogle Scholar
  78. Renard J, Krebs MO, Jay TM, Le Pen G (2013) Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology 225(4):781–790PubMedCrossRefGoogle Scholar
  79. Reyes BA, Rosario JC, Piana PM, Van Bockstaele EJ (2009) Cannabinoid modulation of cortical adrenergic receptors and transporters. J Neurosci Res 87(16):3671–3678PubMedCentralPubMedCrossRefGoogle Scholar
  80. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46PubMedCrossRefGoogle Scholar
  81. Rodríguez de Fonseca F, Ramos JA, Bonnin A, Fernández-Ruiz JJ (1993) Presence of cannabinoid binding sites in the brain from early postnatal ages. NeuroReport 4(2):135–138PubMedCrossRefGoogle Scholar
  82. Rosenbaum CD, Carreiro SP, Babu KM (2012) Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8(1):15–32PubMedCentralPubMedCrossRefGoogle Scholar
  83. Rubino T, Realini N, Braida D, Alberio T, Capurro V, Vigano D, Guidali C, Sala M, Fasano M, Parolaro D (2009a) The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302PubMedCrossRefGoogle Scholar
  84. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, Guidali C, Pinter M, Sala M, Bartesaghi R, Parolaro D (2009b) Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus 19(8):763–772PubMedCrossRefGoogle Scholar
  85. Sánchez F, Gómez-Villalobos Mde J, Juarez I, Quevedo L, Flores G (2011) Dendritic morphology of neurons in medial prefrontal cortex, hippocampus, and nucleus accumbens in adult SH rats. Synapse 65(3):198–206PubMedCrossRefGoogle Scholar
  86. Schneider M (2008) Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol 13:253–263PubMedCrossRefGoogle Scholar
  87. Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28:1760–1769PubMedCrossRefGoogle Scholar
  88. Schneider M, Drews E, Koch M (2005) Behavioral effects in adult rats of chronic prepubertal treatment with the cannabinoid receptor agonist WIN 55,212–2. Behav Pharmacol 16:447–454PubMedCrossRefGoogle Scholar
  89. Schneider M, Schomig E, Leweke FM (2008) Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol 13:345–357PubMedCrossRefGoogle Scholar
  90. Schramm-Sapyta NL, Cha YM, Chaudhry S, Wilson WA, Scott Swartzwelder HS, Kuhn CM (2007) Differential anxiogenic, aversive, and locomotor effects of THC in adolescent and adult rats. Psychopharmacology 191(4):867–877PubMedCrossRefGoogle Scholar
  91. Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH (2013) Forensic investigation of K2, spice, and “bath salt” commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. For Sci Int 233(1–3):416–422Google Scholar
  92. Segalowitz SJ, Davies PL (2004) Charting the maturation of the frontal lobe: an electrophysiological strategy. Brain Cogn 55(1):116–133PubMedCrossRefGoogle Scholar
  93. Singh ME, McGregor IS, Mallet PE (2006) Perinatal exposure to delta(9)-tetrahydrocannabinol alters heroin-induced place conditioning and fos-immunoreactivity. Neuropsychopharmacology 31(1):58–69PubMedGoogle Scholar
  94. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, Christiansen K, McRee B, Vendetti J (2002) Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA 287:1123–1131PubMedCrossRefGoogle Scholar
  95. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463PubMedCrossRefGoogle Scholar
  96. Spiga S, Lintas A, Diana M (2011) Altered mesolimbic dopamine system in THC dependence. Curr Neuropharmacol 9(1):200–204PubMedCentralPubMedCrossRefGoogle Scholar
  97. Tepper JM, Sharpe NA, Koós TZ, Trent F (1998) Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 20(2–3):125–145PubMedCrossRefGoogle Scholar
  98. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462PubMedCrossRefGoogle Scholar
  99. Urbanska M, Blazejczyk M, Jaworski J (2008) Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars) 68(2):264–288Google Scholar
  100. Varlinskaya EI, Spear LP (2008) Social interactions in adolescent and adult Sprague–Dawley rats: impact of social deprivation and test context familiarity. Behav Brain Res 188(2):398–405PubMedCentralPubMedCrossRefGoogle Scholar
  101. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu TT, D'Hooge R, Arckens L, Moons L (2014) MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct [Epub ahead of print]Google Scholar
  102. Wagner FA, Anthony JC (2002) From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 26:479–488PubMedCrossRefGoogle Scholar
  103. Warner LA, Kessler RC, Hughes M, Anthony JC, Nelson CB (1995) Prevalence and correlates of drug use and dependence in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 52:219–229PubMedCrossRefGoogle Scholar
  104. Wilmouth CE, Spear LP (2004) Adolescent and adult rats' aversion to flavors previously paired with nicotine. Ann N Y Acad Sci 1021:462–464PubMedCrossRefGoogle Scholar
  105. Winters BD, Kruger JM, Huang X, Gallaher ZR, Ishikawa M, Czaja K, Krueger JM, Huang YH, Schluter OM, Dong Y (2012) Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci USA 109(40):E2717–E2725PubMedCentralPubMedCrossRefGoogle Scholar
  106. Yuan WX, Heng LJ, Ma J, Wang XQ, Qu LJ, Duan L, Kang JJ, Chen LW, Gao GD (2013) Increased expression of cannabinoid receptor 1 in the nucleus accumbens core in a rat model with morphine withdrawal. Brain Res 1531:102–112PubMedCrossRefGoogle Scholar
  107. Zilles K, Wree A (1995) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego, CA, pp p 649–688Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. F. Carvalho
    • 1
    • 2
    • 3
  • B. A. S. Reyes
    • 4
  • F. Ramalhosa
    • 1
    • 2
  • N. Sousa
    • 1
    • 2
  • E. J. Van Bockstaele
    • 4
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s, PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Department of Neuroscience, Farber Institute for NeurosciencesThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations