Brain Structure and Function

, Volume 220, Issue 5, pp 2675–2689

Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice

  • Jeroen Aerts
  • Julie Nys
  • Lieve Moons
  • Tjing-Tjing Hu
  • Lutgarde Arckens
Original Article


Matrix metalloproteinases (MMPs) are Zn2+-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3−/−) mice. Golgi–Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3−/− mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3−/− mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3−/− mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.


Matrix metalloproteinase Golgi–Cox Apical dendrite Neurofilament Monocular enucleation Multimodal 


  1. Aerts J, Nys J, Arckens L (2014) A highly reproducible and straightforward method to perform in vivo monocular enucleation in the mouse. J Vis Exp (in press)Google Scholar
  2. Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254. doi:10.1016/j.jneumeth.2008.05.003 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, Vandesande F (1995) Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat 8:117–124CrossRefPubMedGoogle Scholar
  4. Arckens L, Van der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544CrossRefPubMedGoogle Scholar
  5. Barry DM, Millecamps S, Julien J-P, Garcia ML (2007) New movements in neurofilament transport, turnover and disease. Exp Cell Res 313:2110–2120. doi:10.1016/j.yexcr.2007.03.011 CrossRefPubMedGoogle Scholar
  6. Bartoletti A, Cancedda L, Reid SW, Tessarollo L, Porciatti V, Pizzorusso T, Maffei L (2002) Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation. J Neurosci 22:10072–10077PubMedGoogle Scholar
  7. Bilousova TV, Rusakov DA, Ethell DW, Ethell IM (2006) Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 97:44–56. doi:10.1111/j.1471-4159.2006.03701.x PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2008) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102. doi:10.1136/jmg.2008.061796 CrossRefPubMedGoogle Scholar
  9. Birdal T (2011) Smoothing 2D contours using local regression lines. MATLAB central file exchangeGoogle Scholar
  10. Bonhoeffer T (1996) Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6:119–126CrossRefPubMedGoogle Scholar
  11. Butler GS, Overall CM (2009) Updated biological roles for matrix metalloproteinases and new “Intracellular” substrates revealed by degradomics. Biochemistry 48:10830–10845. doi:10.1021/bi901656f CrossRefPubMedGoogle Scholar
  12. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423. doi:10.3109/10409238.2010.501783 CrossRefPubMedGoogle Scholar
  13. Cnops L, Hu T–T, Vanden Broeck J, Burnat K, Van den Bergh G, Arckens L (2007) Age- and experience-dependent expression of Dynamin I and Synaptotagmin I in cat visual system. J Comp Neurol 504:254–264. doi:10.1002/cne.21415 CrossRefPubMedGoogle Scholar
  14. Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST (2010) Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neurosci 166:508–521. doi:10.1016/j.neuroscience.2009.12.061 CrossRefGoogle Scholar
  15. D’Errico J (2012) Interparc. MATLAB central file exchangeGoogle Scholar
  16. Dale JM, Garcia ML (2012) Neurofilament phosphorylation during development and disease: which came first, the phosphorylation or the accumulation? J Amino Acids 2012:1–10. doi:10.1007/s00401-011-0848-5 CrossRefGoogle Scholar
  17. Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, Smith SJ, Shatz CJ (2009) Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463–470. doi:10.1016/j.neuron.2009.10.015 PubMedCentralCrossRefPubMedGoogle Scholar
  18. De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases*. Annu Rev Neurosci 31:151–173. doi:10.1146/annurev.neuro.31.061307.090711 CrossRefPubMedGoogle Scholar
  19. Desai NS, Cudmore RH, Nelson SB, Turrigiano GG (2002) Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci 5:783–789. doi:10.1038/nn878 PubMedGoogle Scholar
  20. Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11:735–746. doi:10.1038/nrn2898 CrossRefPubMedGoogle Scholar
  21. Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. doi:10.1146/annurev.neuro.27.070203.144152 CrossRefPubMedGoogle Scholar
  22. Dziembowska M, Wlodarczyk J (2012) MMP9: a novel function in synaptic plasticity. Int J Biochem Cell Biol 44:709–713. doi:10.1016/j.biocel.2012.01.023 CrossRefPubMedGoogle Scholar
  23. Esparza J, Kruse M, Lee J, Michaud M, Madri JA (2004) MMP-2 null mice exhibit an early onset and severe experimental autoimmune encephalomyelitis due to an increase in MMP-9 expression and activity. FASEB J 18:1682–1691. doi:10.1096/fj.04-2445com CrossRefPubMedGoogle Scholar
  24. Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85:2813–2823. doi:10.1002/jnr.21273 CrossRefPubMedGoogle Scholar
  25. Faguet J, Maranhao B, Smith SL, Trachtenberg JT (2008) Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity. J Neurophysiol 101:855–861. doi:10.1152/jn.90893.2008 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Fenstermaker V, Chen Y, Ghosh A, Yuste R (2004) Regulation of dendritic length and branching by semaphorin 3A. J Neurobiol 58:403–412. doi:10.1002/neu.10304 CrossRefPubMedGoogle Scholar
  27. Fowlkes JL (2003) Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes. Endocrinology 145:620–626. doi:10.1210/en.2003-0636 CrossRefPubMedGoogle Scholar
  28. Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  29. Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923. doi:10.1016/j.neuron.2004.12.003 CrossRefPubMedGoogle Scholar
  30. Fujioka H, Dairyo Y, Yasunaga K-I, Emoto K (2012) Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and DISEASE. Biochem Res Int 2012:1–8. doi:10.1016/j.neuron.2010.06.021 CrossRefGoogle Scholar
  31. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 57:774–777PubMedGoogle Scholar
  32. Gonthier B, Nasarre C, Roth L, Perraut M, Thomasset N, Roussel G, Aunis D, Bagnard D (2006) Functional interaction between matrix metalloproteinase-3 and semaphorin-3C during cortical axonal growth and guidance. Cereb Cortex 17:1712–1721. doi:10.1093/cercor/bhl082 CrossRefPubMedGoogle Scholar
  33. Gonthier B, Koncina E, Satkauskas S, Perraut M, Roussel G, Aunis D, Kapfhammer JP, Bagnard D (2009) A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS One 4:e5099. doi:10.1371/journal.pone.0005099.s001 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Heimel JA, Hermans JM, Sommeijer JP, Neuro-Bsik Mouse Phenomics consortium, Levelt CN (2008) Genetic control of experience-dependent plasticity in the visual cortex. Genes Brain Behav 7:915–923. doi:10.1111/j.1601-183X.2008.00431.x CrossRefPubMedGoogle Scholar
  35. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888. doi:10.1038/nrn1787 CrossRefPubMedGoogle Scholar
  36. Hinkle CL, Diestel S, Lieberman J, Maness PF (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66:1378–1395. doi:10.1002/neu.20257 CrossRefPubMedGoogle Scholar
  37. Hu T-T, Van den Bergh G, Thorrez L, Heylen K, Eysel UT, Arckens L (2011) Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone. Cereb Cortex 21:2883–2892. doi:10.1093/cercor/bhr079 CrossRefPubMedGoogle Scholar
  38. Huntley GW (2012) Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13:743–757. doi:10.1038/nrn3320 CrossRefPubMedGoogle Scholar
  39. Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, Crisostomo RA, Larsen BP, Mehta A, Alcantara CJ, Patel B, Swain RA, Weiler IJ, Oostra BA, Greenough WT (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111:140–146. doi:10.1002/ajmg.10500 CrossRefPubMedGoogle Scholar
  40. Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828. doi:10.1016/j.neuron.2011.12.026 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Jan Y-N, Jan LY (2003) The control of dendrite development. Neuron 40:229–242CrossRefPubMedGoogle Scholar
  42. Janmey PA, Leterrier J-F, Herrmann H (2003) Assembly and structure of neurofilaments. Curr Opin Colloid Int 8:40–47. doi:10.1016/S1359-0294(03)00010-4 CrossRefGoogle Scholar
  43. Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC (2011) Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 31:e35–e44. doi:10.1161/ATVBAHA.111.225623 CrossRefPubMedGoogle Scholar
  44. Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23:237–256CrossRefPubMedGoogle Scholar
  45. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680. doi:10.1016/j.neuron.2008.04.023 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kanold PO, Kim YA, GrandPre T, Shatz CJ (2009) Co-regulation of ocular dominance plasticity and NMDA receptor subunit expression in glutamic acid decarboxylase-65 knock-out mice. J Physiol 587:2857–2867. doi:10.1113/jphysiol.2009.171215 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Kim S, Chang R, Teunissen C, Gebremichael Y, Petzold A (2011) Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure. J Neurol Sci 307:132–138. doi:10.1016/j.jns.2011.04.023 CrossRefPubMedGoogle Scholar
  48. Kong J, Tung VW-Y, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140:1167–1176PubMedCentralCrossRefPubMedGoogle Scholar
  49. Konopacki FA, Rylski M, Wilczek E, Amborska R, Detka D, Kaczmarek L, Wilczynski GM (2007) Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA. Neurosci 150:31–39. doi:10.1016/j.neuroscience.2007.08.026 CrossRefGoogle Scholar
  50. Kovalchuk Y (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734. doi:10.1126/science.1067766 CrossRefPubMedGoogle Scholar
  51. Lariviere RC, Julien J-P (2003) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148. doi:10.1002/neu.10270 CrossRefGoogle Scholar
  52. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057 CrossRefPubMedGoogle Scholar
  53. Lodovichi C, Berardi N, Pizzorusso T, Maffei L (2000) Effects of neurotrophins on cortical plasticity: same or different? J Neurosci 20:2155–2165PubMedGoogle Scholar
  54. Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T (1992) Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci 12:4651–4662PubMedGoogle Scholar
  55. Mannello F, Medda V (2012) Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 47:27–58. doi:10.1016/j.proghi.2011.12.002 CrossRefPubMedGoogle Scholar
  56. Maya-Vetencourt JF, Baroncelli L, Viegi A, Tiraboschi E, Castren E, Cattaneo A, Maffei L (2012) IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels. Neural Plast 2012:1–10. doi:10.1038/nn1860 Google Scholar
  57. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803CrossRefPubMedGoogle Scholar
  58. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540CrossRefPubMedGoogle Scholar
  59. McFarlane S (2003) Metalloproteases: carving out a role in axon guidance. Neuron 37:559–562CrossRefPubMedGoogle Scholar
  60. Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 96:1227–1241. doi:10.1111/j.1471-4159.2005.03565.x CrossRefPubMedGoogle Scholar
  61. Michaluk P, Mikasova L, Groc L, Frischknecht R, Choquet D, Kaczmarek L (2009) Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin 1 signaling. J Neurosci 29:6007–6012. doi:10.1523/JNEUROSCI.5346-08.2009 CrossRefPubMedGoogle Scholar
  62. Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M, Zuschratter W, Muller D, Wilczynski GM, Mozrzymas JW, Stewart MG, Kaczmarek L, Wlodarczyk J (2011) Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci 124:3369–3380. doi:10.1242/jcs.090852 CrossRefPubMedGoogle Scholar
  63. Milward EA, Fitzsimmons C, Szklarczyk A, Conant K (2007) The matrix metalloproteinases and CNS plasticity: an overview. J Neuroimmunol 187:9–19. doi:10.1016/j.jneuroim.2007.04.010 CrossRefPubMedGoogle Scholar
  64. Moresco EMY (2005) Integrin-mediated dendrite branch maintenance requires abelson (Abl) family kinases. J Neurosci 25:6105–6118. doi:10.1523/JNEUROSCI.1432-05.2005 CrossRefPubMedGoogle Scholar
  65. Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M (2007) Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:961–972. doi:10.1016/j.neuron.2007.05.028 CrossRefPubMedGoogle Scholar
  66. Murphy G, Stanton H, Cowell S, Butler G, Knäuper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS 107:38–44CrossRefPubMedGoogle Scholar
  67. Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934. doi:10.1523/JNEUROSCI.4359-05.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  68. Ng T, Ryu JR, Sohn JH, Tan T, Song H, Ming G-L, Goh ELK (2013) Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway. PLoS One 8:e65572. doi:10.1371/journal.pone.0065572.s003 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20:4165–4176PubMedGoogle Scholar
  70. Nordstrom LA, Lochner J, Yeung W, Ciment G (1995) The metalloproteinase stromelysin-1 (transin) mediates PC12 cell growth cone invasiveness through basal laminae. Mol Cell Neurosci 6:56–68CrossRefPubMedGoogle Scholar
  71. Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L (2014) The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 522:950–970. doi:10.1002/cne.23455 CrossRefPubMedGoogle Scholar
  72. Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267:3581–3584PubMedGoogle Scholar
  73. Oliveira-Silva P, Jurgilas PB, Trindade P, Campello-Costa P, Perales J, Savino W, Serfaty CA (2007) Matrix metalloproteinase-9 is involved in the development and plasticity of retinotectal projections in rats. Neuroimmunomodulation 14:144–149CrossRefPubMedGoogle Scholar
  74. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239. doi:10.1038/nrc1821 CrossRefPubMedGoogle Scholar
  75. Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456. doi:10.1002/cne.903080310 CrossRefPubMedGoogle Scholar
  76. Paulussen M, Jacobs S, Gucht E, Hof PR, Arckens L (2011) Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit. Brain Struct Funct 216:183–199. doi:10.1007/s00429-011-0311-3 CrossRefPubMedGoogle Scholar
  77. Penn AA, Shatz CJ (1999) Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr Res 45:447–458. doi:10.1203/00006450-199904010-00001 CrossRefPubMedGoogle Scholar
  78. Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596PubMedCentralCrossRefPubMedGoogle Scholar
  79. Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985. doi:10.1016/S0896-6273(03)00323-4 CrossRefPubMedGoogle Scholar
  80. Schulze-Tanzil G, de Souza P, Merker HJ, Shakibaei M (2001) Co-localization of integrins and matrix metalloproteinases in the extracellular matrix of chondrocyte cultures. Histol Histopathol 16:1081PubMedGoogle Scholar
  81. Solé S, Petegnief V, Gorina R, Chamorro A, Planas AM (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63:338–349PubMedGoogle Scholar
  82. Spolidoro M, Sale A, Berardi N, Maffei L (2008) Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192:335–341. doi:10.1007/s00221-008-1509-3 CrossRefPubMedGoogle Scholar
  83. Spolidoro M, Putignano E, Munafo C, Maffei L, Pizzorusso T (2012) Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Cereb Cortex 22:725–734. doi:10.1093/cercor/bhr158 CrossRefPubMedGoogle Scholar
  84. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221. doi:10.1038/nrn2286 CrossRefPubMedGoogle Scholar
  85. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130PubMedCentralCrossRefPubMedGoogle Scholar
  86. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCentralCrossRefPubMedGoogle Scholar
  87. Szaro BG, Strong MJ (2010) Post-transcriptional control of neurofilaments: new roles in development, regeneration and neurodegenerative disease. Trends Neurosci 33:27–37. doi:10.1016/j.tins.2009.10.002 CrossRefPubMedGoogle Scholar
  88. Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930PubMedGoogle Scholar
  89. Van Brussel L, Gerits A, Arckens L (2009) Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol 514:107–116. doi:10.1002/cne.21994 CrossRefPubMedGoogle Scholar
  90. Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146. doi:10.1093/cercor/bhq286 CrossRefPubMedGoogle Scholar
  91. Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819. doi:10.1093/cercor/bhm012 CrossRefPubMedGoogle Scholar
  92. Van Hove I, Verslegers M, Buyens T, Delorme N, Lemmens K, Stroobants S, Gantois I, D’Hooge R, Moons L (2011) An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. Mol Neurobiol 45:17–29. doi:10.1007/s12035-011-8215-z CrossRefPubMedGoogle Scholar
  93. Vicente-Manzanares M, Hodges J, Horwitz AR (2009) Dendritic spines: similarities with protrusions and adhesions in migrating cells. Open Neurosci J 3:87–96. doi:10.2174/1874082000903020087 PubMedCentralCrossRefPubMedGoogle Scholar
  94. Wang X-B, Bozdagi O, Nikitczuk JS, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci 105:19520–19525PubMedCentralCrossRefPubMedGoogle Scholar
  95. Wiera G, Wójtowicz T, Lebida K, Piotrowska A, Drulis-Fajdasz D, Gomułkiewicz A, Gendosz D, Podhorska-Okołów M, Capogna M, Wilczyński G, Dzięgiel P, Kaczmarek L, Mozrzymas JW (2012) Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber—CA3 pathway. Mol Cell Neurosci 50:147–159. doi:10.1016/j.mcn.2012.04.005 CrossRefPubMedGoogle Scholar
  96. Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP, Swinnen SP, Wenderoth N, Arckens L, D’Hooge R (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci USA 110:3131–3136. doi:10.1073/pnas.1217832110 PubMedCentralCrossRefPubMedGoogle Scholar
  97. Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci 88:5106–5110PubMedCentralCrossRefPubMedGoogle Scholar
  98. Wright JW, Meighan PC, Brown TE, Wiediger RV, Sorg BA, Harding JW (2009) Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3. Behav Brain Res 203:27–34. doi:10.1016/j.bbr.2009.04.014 CrossRefPubMedGoogle Scholar
  99. Yasunaga K-I, Kanamori T, Morikawa R, Suzuki E, Emoto K (2010) Dendrite reshaping of adult drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev Cell 18:621–632. doi:10.1016/j.devcel.2010.02.010 CrossRefPubMedGoogle Scholar
  100. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931–944. doi:10.1038/nrn1807 CrossRefPubMedGoogle Scholar
  101. Zangenehpour S, Chaudhuri A (2002) Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps. Mol Brain Res 109:221–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jeroen Aerts
    • 1
  • Julie Nys
    • 1
  • Lieve Moons
    • 2
  • Tjing-Tjing Hu
    • 1
    • 2
  • Lutgarde Arckens
    • 1
  1. 1.Laboratory of Neuroplasticity and NeuroproteomicsKU LeuvenLeuvenBelgium
  2. 2.Laboratory of Neural Circuit Development and RegenerationKU LeuvenLeuvenBelgium

Personalised recommendations