Brain Structure and Function

, Volume 220, Issue 2, pp 587–604 | Cite as

The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis

  • S. C. KrallEmail author
  • C. Rottschy
  • E. Oberwelland
  • D. Bzdok
  • P. T. Fox
  • S. B. Eickhoff
  • G. R. Fink
  • K. Konrad


The right temporoparietal junction (rTPJ) is frequently associated with different capacities that to shift attention to unexpected stimuli (reorienting of attention) and to understand others’ (false) mental state [theory of mind (ToM), typically represented by false belief tasks]. Competing hypotheses either suggest the rTPJ representing a unitary region involved in separate cognitive functions or consisting of subregions subserving distinct processes. We conducted activation likelihood estimation (ALE) meta-analyses to test these hypotheses. A conjunction analysis across ALE meta-analyses delineating regions consistently recruited by reorienting of attention and false belief studies revealed the anterior rTPJ, suggesting an overarching role of this specific region. Moreover, the anatomical difference analysis unravelled the posterior rTPJ as higher converging in false belief compared with reorienting of attention tasks. This supports the concept of an exclusive role of the posterior rTPJ in the social domain. These results were complemented by meta-analytic connectivity mapping (MACM) and resting-state functional connectivity (RSFC) analysis to investigate whole-brain connectivity patterns in task-constrained and task-free brain states. This allowed for detailing the functional separation of the anterior and posterior rTPJ. The combination of MACM and RSFC mapping showed that the posterior rTPJ has connectivity patterns with typical ToM regions, whereas the anterior part of rTPJ co-activates with the attentional network. Taken together, our data suggest that rTPJ contains two functionally fractionated subregions: while posterior rTPJ seems exclusively involved in the social domain, anterior rTPJ is involved in both, attention and ToM, conceivably indicating an attentional shifting role of this region.


Attention Theory of mind ALE MACM RSFC 


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2014_803_MOESM1_ESM.docx (950 kb)
Supplementary material 1 (DOCX 949 kb)


  1. Aichhorn M, Perner J, Weiss B, Kronbichler M, Staffen W, Ladurner G (2009) Temporo-parietal junction activity in theory-of-mind tasks: falseness, beliefs, or attention. J Cogn Neurosci 21:1179–1192. doi: 10.1162/jocn.2009.21082
  2. Alvarez JA, Freides D (2004) Research on attention deficit hyperactivity disorder using the covert orienting paradigm of Posner. Dev Neuropsychol 26:627–645. doi: 10.1207/s15326942dn2602_6 PubMedGoogle Scholar
  3. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV. American Psychiatric Association, WashingtonGoogle Scholar
  4. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comput Neurosci 412:319–341. doi: 10.1002/(SICI)1096-9861(19990920)412:2<319:AID-CNE10>3.0.CO;2-7 Google Scholar
  5. Apperly IA, Samson D, Chiavarino C, Humphreys GW (2004) Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. J Cogn Neurosci 16:1773–1784. doi: 10.1162/0898929042947928 PubMedGoogle Scholar
  6. Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural mechanisms of visual attention: object-based selection of a region in space. J Cogn Neurosci 12:106–117. doi: 10.1162/089892900563975 PubMedGoogle Scholar
  7. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. doi: 10.1002/mrm.1910340409 PubMedGoogle Scholar
  8. Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DEJ (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. NeuroImage 22:530–540. doi: 10.1016/j.neuroimage.2003.12.034 PubMedGoogle Scholar
  9. Brass M, Derrfuss J, Forstmann B, von Cramon DY (2005) The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 9:314–316. doi: 10.1016/j.tics.2005.05.001 PubMedGoogle Scholar
  10. Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K (2007) Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatr 48:1251–1258. doi: 10.1111/j.1469-7610.2007.01799.x Google Scholar
  11. Bultitude JH, Rafal RD, List A (2009) Prism adaption reverses the local processing bias in patients with right temporo-parietal junction lesions. Brain 132:1669–1677. doi: 10.1093/brain/awp096 PubMedCentralPubMedGoogle Scholar
  12. Bzdok D, Langner R, Schilbach L, Engemann D, Laird AR, Fox PT, Eickhoff SB (2013a) Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci 7:1–17. doi: 10.3389/fnhum.2013.00232 Google Scholar
  13. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Laird AR, Fox PT, Zilles K, Eickhoff SB (2013b) Characterization of the temporo-parietal junction by combining data-driven parcellation complementary connectivity analyses, and functional decoding. NeuroImage 17:381–392. doi: 10.1016/j.neuroimage.2013.05.046 Google Scholar
  14. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217:783–796. doi: 10.1007/s00429-012-0380-y PubMedCentralPubMedGoogle Scholar
  15. Cabeza R, Ciaramelli E, Moscovitch M (2012) Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn Sci 16:338–352. doi: 10.1016/j.tics.2012.04.008 PubMedCentralPubMedGoogle Scholar
  16. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33:430–448. doi: 10.1016/j.neuroimage.2006.06.054 PubMedGoogle Scholar
  17. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of activation observation and imitation in the human brain. NeuroImage 50:1148–1167. doi: 10.1016/j.neuroimage.2009.12.112 PubMedGoogle Scholar
  18. Chen Q, Weidner R, Vossel S, Weiss PH, Fink GR (2012) Neural mechanisms of attentional reorienting in three-dimensional space. J Neurosci 32:13352–13362. doi: 10.1523/JNEUROSCI.1772-12.2012
  19. Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB, Giampietro V, Daly E, Ecker C, Robertson D, MRC AIMS consortium, Murphy DG, Rubia K (2013) Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Mol Psychiatr 18:236–244. doi: 10.1038/mp.2011.185 Google Scholar
  20. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297. doi: 10.1038/73009 PubMedGoogle Scholar
  21. Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523. doi: 10.1162/089892902317362029
  22. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324. doi: 10.1016/j.neuron.2008.04.017 PubMedCentralPubMedGoogle Scholar
  23. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. doi: 10.1038/nrn755 PubMedGoogle Scholar
  24. Coull JT, Frith CD, Büchel C, Nobre AC (2000) Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38:808–819. doi: 10.1016/S0028-3932(99)00132-3
  25. Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neurosci 13:580–593. doi: 10.1177/1073858407304654 Google Scholar
  26. Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, Rodman J, Lord C, Castellanos FX, Milham MP (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 74:623–632. doi: 10.1016/j.biopsych.2013.02.011 PubMedGoogle Scholar
  27. Dodell-Feder D, Koster-Hale J, Bedny M, Saxe R (2011) fMRI item analysis in a theory of mind task. NeuroImage 55:705–712. doi: 10.1016/j.neuroimage.2010.12.040 PubMedGoogle Scholar
  28. Döhnel K, Schuwerk T, Meinhardt J, Sodian B, Hajak G, Sommer M (2012) Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning. NeuroImage 60:1652–1661. doi: 10.1016/j.neuroimage.2012.01.073 PubMedGoogle Scholar
  29. Doricchi F, Macci E, Silvetti M, Macaluso E (2010) Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb Cortex 20:1574–1585. doi: 10.1093/cercor/bhp215
  30. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283. doi: 10.1038/72991 PubMedGoogle Scholar
  31. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59:2349–2361. doi: 10.1016/j.neuroimage.2011.09.017 PubMedCentralPubMedGoogle Scholar
  32. Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42:107–121. doi: 10.1177/155005941104200211 PubMedGoogle Scholar
  33. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926. doi: 10.1002/hbm.20718 PubMedCentralPubMedGoogle Scholar
  34. Eickhoff SB, Paus T, Caspers S, Grosbas MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:1325–1335. doi: 10.1016/j.neuroimage.2007.03.060 Google Scholar
  35. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335. doi: 10.1016/j.neuroimage.2004.12.034 PubMedGoogle Scholar
  36. Elsabbagh M, Fernandes J, Webb SJ, Dawson J, Charman T, Johnson MH, The British Autism Study of Infant Siblings Team (2013) Disengagement of visual attention in infancy is associated with emerging Autism in toddlerhood. Biol Psychiat 74:189–194. doi: 10.1016/j.biopsych.2012.11.030 Google Scholar
  37. Engelmann JB, Damaraju E, Padmala S, Pessoa L (2009) Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Front Hum Neurosci 3:1–17. doi: 10.3389/neuro.09.004.2009
  38. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26:471–479. doi: 10.1016/j.neuroimage.2005.02.004 PubMedGoogle Scholar
  39. Fletcher PC, Happé F, Frith U, Baker SC, Dolan RJ, Frackowiak RSJ, Frith CD (1995) Other minds in the brain: a functional imaging study of ‘theory of mind’ in story comprehension. Cognition 57:109–128. doi: 10.1016/0010-0277(95)00692-R
  40. Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3:319–321. doi: 10.1038/nrn789 PubMedGoogle Scholar
  41. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi: 10.1038/nrn2201 PubMedGoogle Scholar
  42. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. doi: 10.1152/jn.90777.2008 PubMedCentralPubMedGoogle Scholar
  43. Gallagher HL, Frith CD (2003) Functional imaging of ‘theory of mind’. Trends Cogn Sci 7:77–83. doi: 10.1016/S1364-6613(02)00025-6 PubMedGoogle Scholar
  44. Gallagher HL, Happé F, Brunswick N, Fletcher PC, Frith U, Frith CD (2000) Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38:11–21. doi: 10.1016/S0028-3932(99)00053-6
  45. Geng JJ, Mangun GR (2011) Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage 54:594–601. doi: 10.1016/j.neuroimage.2010.08.025 PubMedCentralPubMedGoogle Scholar
  46. Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev. doi: 10.1016/j.neubiorev.2013.08.010 PubMedCentralPubMedGoogle Scholar
  47. Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cel 174:1–89. doi: 10.1007/978-3-642-18910-4_1 Google Scholar
  48. Giessing C, Thiel CM, Stephan KE, Rösler F, Fink GR (2004) Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. NeuroImage 23:1370–1381. doi: 10.1016/j.neuroimage.2004.08.008 PubMedGoogle Scholar
  49. Gillebert CR, Mantini D, Peeters R, Dupont P, Vandenberghe R (2013) Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex. NeuroImage 67:257–272. doi: 10.1016/j.neuroimage.2012.11.026
  50. Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106. doi: 10.1093/brain/122.6.1093 PubMedGoogle Scholar
  51. Gobbini MI, Koralek AC, Bryan RE, Montgomery KJ, Haxby JV (2007) Two takes on the social brain: a comparison of theory of mind tasks. J Cogn Neurosci 19:1803–1814. doi: 10.1162/jocn.2007.19.11.1803
  52. Hartwright CE, Apperly IA, Hansen PC (2012) Multiple roles for executive control in belief-desire reasoning: distinct neural networks are recruited for self perspective inhibition and complexity of reasoning. NeuroImage 61:921–930. doi: 10.1016/j.neuroimage.2012.03.012
  53. Hooker CI, Verosky SC, Germine LT, Knight RT, D’Esposito M (2008) Mentalizing about emotion and its relationship to empathy. SCAN 3:204–217. doi: 10.1093/scan/nsn019
  54. Hooker CI, Verosky SC, Germine LT, Knight RT, D’Esposito M (2010) Neural activity during social signal perception correlates with self-reported empathy. Brain Res 1308:100–113. doi: 10.1016/j.brainres.2009.10.006 PubMedCentralPubMedGoogle Scholar
  55. Indovina I, Macaluso E (2004) Occipital–parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. MRI 22:1477–1486. doi: 10.1016/j.mri.2004.10.016
  56. Indovina I, Macaluso E (2007) Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cereb Cortex 17:1701–1711. doi: 10.1093/cercor/bhl081
  57. Jackson PL, Brunet E, Meltzoff AN, Decety J (2006) Empathy examined through the neural mechanisms involved in imaging how I feel versus how you feel pain. Neuropsycholgia 44:752–761. doi: 10.1016/j.neuropsychologia.2005.07.015 Google Scholar
  58. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. NeuroImage 60:2389–2398. doi: 10.1016/j.neuroimage.2012.02.037 PubMedCentralPubMedGoogle Scholar
  59. Jakobs O, Wang LE, Dafotakis M, Grefkes C, Zilles K, Eickhoff SB (2009) Effects of timing and movement uncertainty implicate the temporo-parietal junction in the prediction of forthcoming motor actions. NeuroImage 47:667–677. doi: 10.1016/j.neuroimage.2009.04.065 PubMedGoogle Scholar
  60. Jenkins AC, Mitchell JP (2010) Mentalizing under uncertainty: dissociated neural responses to ambiguous and unambiguous mental state inference. Cereb Cortex 20:404–410. doi: 10.1093/cercor/bhp109
  61. Jimura K, Konishi S, Asari T, Miyashita Y (2010) Temporal pole activity during understanding other persons’ mental states correlates with neuroticism trait. Brain Res 1328:104–112. doi: 10.1016/j.brainres.2010.03.016
  62. Kobayashi C, Glover GH, Temple E (2006) Cultural and linguistic influence on neural bases of ‘theory of mind’: an fMRI study with Japanese bilinguals. Brain Lang 98:210–220. doi: 10.1016/j.bandl.2006.04.013
  63. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J, Herpertz-Dahlmann B, Fink GR (2005) Development of attentional networks: an fMRI study with children and adults. NeuroImage 28:429–439. doi: 10.1016/j.neuroimage.2005.06.065
  64. Korkmaz B (2011) Theory of mind and neurodevelopmental disorders of childhood. Pediatr Res 69:101R–108R. doi: 10.1203/PDR.0b013e318212c177 PubMedGoogle Scholar
  65. Koster-Hale J, Saxe R (2013) Theory of mind: a neural prediction problem. Neuron 79:836–848. doi: 10.1016/j.neuron.2013.08.020 PubMedCentralPubMedGoogle Scholar
  66. Kubit B, Jack AI (2013) Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: findings from an ALE-based meta-analysis and resting-state functional connectivity. Front Hum Neurosci 7:1–18. doi: 10.3389/fnhum.2013.00323 Google Scholar
  67. Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ Jr, McKay DR, Bzdok D, Laird RW, Robinson JL, Turner JA, Turkeltaub PE, Lancaster JL, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:1–9. doi: 10.1186/1756-0500-4-349 Google Scholar
  68. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009a) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:1–11. doi: 10.3389/neuro.11.023.2009 Google Scholar
  69. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009b) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29:14496–14505. doi: 10.1523/JNEUROSCI.4004-09.2009 PubMedCentralPubMedGoogle Scholar
  70. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of task co-activations. NeuroImage 80:505–514. doi: 10.1016/j.neuroimage.2013.04.073 PubMedCentralPubMedGoogle Scholar
  71. Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analysed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205. doi: 10.1002/hbm.20345 PubMedGoogle Scholar
  72. Landry O, Parker A (2013) A meta-analysis of visual orienting in autism. Front Hum Neurosci 7:1–12. doi: 10.3389/fnhum.2013.00833 Google Scholar
  73. Lombardo MV, Chakrabarti B, Bullmore ET, Wheelwright SJ, Sadek SA, Suckling J, MRC AIMS Consortium, Baron-Cohen S (2009) Shared neural circuits for mentalizing about the self and others. J Cogn Neurosci 22:1623–1635. doi: 10.1162/jocn.2009.21287 Google Scholar
  74. Macaluso E, Frith CD, Driver J (2002) Supramodal effects of covert spatial orienting triggered by visual or tactile events. J Cogn Neurosci 14:389–401. doi: 10.1162/089892902317361912 PubMedGoogle Scholar
  75. Macaluso E, Patria F (2007) Spatial re-orienting of visual attention along the horizontal or the vertical axis. Exp Brain Res 180:23–34. doi: 10.1007/s00221-006-0841-8
  76. Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134. doi: 10.1146/annurev-psych-120709-145406 PubMedGoogle Scholar
  77. Mars RB, Neubert F-X, Noonan MP, Sallet J, Toni I, Rushworth MFS (2012a) On the relationship between the “default mode network” and the “social brain”. Front Hum Neurosci 6:1–9. doi: 10.3389/fnhum.2012.00189 Google Scholar
  78. Mars RB, Sallet J, Neubert F-X, Rushworth MFS (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci USA 110:10806–10811. doi: 10.1073/pnas.1302956110 PubMedCentralPubMedGoogle Scholar
  79. Mars RB, Sallet J, Schüffelgen U, Jbabdi S, Toni I, Rushworth MFS (2012b) Connectivity-based subdivisions of the right “temporoparietal junction area”: evidence for different areas participating in different networks. Cereb Cortex 22:1894–1903. doi: 10.1093/cercor/bhr268 PubMedGoogle Scholar
  80. Mattler U, Wüstenberg T, Heinze H-J (2006) Common modules for processing invalidly cued events in the human cortex. Brain Res 1109:128–141. doi: 10.1016/j.brainres.2006.06.051
  81. Mayer AR, Franco AR, Harrington DL (2009) Neuronal modulation of auditory attention by informative and uninformative spatial cues. Hum Brain Mapp 30:1652–1666. doi: 10.1002/hbm.20631
  82. Mayer AR, Harrington D, Adair JC, Lee R (2006) The neural networks underlying endogenous auditory covert orienting and reorienting. NeuroImage 30:938–949. doi: 10.1016/j.neuroimage.2005.10.050 PubMedGoogle Scholar
  83. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325. doi: 10.1002/ana.410100402 PubMedGoogle Scholar
  84. Mitchell JP (2008) Activity in right temporo-parietal is not selective for theory of mind. Cereb Cortex 18:262–271. doi: 10.1093/cercor/bhm051 PubMedGoogle Scholar
  85. Moran JM, Jolly E, Mitchell JP (2012) Social-cognitive deficits in normal aging. J Neurosci 32:5553–5561. doi: 10.1523/JNEUROSCI.5511-11.2012
  86. Mundy P, Newell L (2007) Attention, joint attention, and social cognition. Curr Dir Psychol Sci 16:269–274. doi: 10.1111/j.1467-8721.2007.00518.x PubMedCentralPubMedGoogle Scholar
  87. Natale E, Marzi CA, Macaluso E (2009) FMRI correlates of visuo-spatial reorienting investigated with an attention shifting double-cue paradigm. Hum Brain Mapp 30:2367–2381. doi: 10.1002/hbm.20675
  88. Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. NeuroImage 25:653–660. doi: 10.1016/j.neuroimage.2004.12.005 PubMedGoogle Scholar
  89. Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system: a synopsis and atlas, 4th edn. Springer, BerlinGoogle Scholar
  90. Paynter J, Peterson C (2010) Language and ToM development in autism versus Asperger syndrome: contrasting influences of syntactic versus lexical/semantic maturity. Res Autism Spectr Dis 4:377–385. doi: 10.1016/j.rasd.2009.10.005 Google Scholar
  91. Perner J, Aichhorn M, Kronbichler M, Staffen W, Ladurner G (2006) Thinking of mental and other representations: The roles of the left and right temporo-parietal junction. Soc Neurosci 1:245–258. doi: 10.1080/17470910600989896
  92. Polderman TJ, Hoekstra RA, Vinkhuyzen AA, Sullivan PF, van der Sluis S, Posthuma D (2013) Attentional switching forms a genetic link between attention problems and autistic traits in adults. Psychol Med 43:1985–1996. doi: 10.1017/S0033291712002863 PubMedCentralPubMedGoogle Scholar
  93. Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen 109:160–174. doi: 10.1037//0096-3445.109.2.160 Google Scholar
  94. Rehme AK, Eickhoff SB, Grefkes C (2013) State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 63:237–246. doi: 10.1016/j.neuroimage.2012.11.027 Google Scholar
  95. Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 35:1363–1396. doi: 10.1016/j.neubiorev.2011.02.015 PubMedGoogle Scholar
  96. Rothbart MK, Sheese BE, Rueda MR, Posner MI (2011) Developing mechanisms of self-regulation in early life. Emot Rev 3:207–213. doi: 10.1177/1754073910387943 PubMedCentralPubMedGoogle Scholar
  97. Rothmayr C, Sodian B, Hajak G, Döhnel K, Meinhardt J, Sommer M (2011) Common and distinct neural networks for false-belief reasoning and inhibitory control. NeuroImage 56:1705–1713. doi: 10.1016/j.neuroimage.2010.12.052
  98. Rottschy C, Kleiman A, Dogan I, Lagner R, Mirzazade S, Kronenbuerger M, Werner C, Shah NJ, Schulz JB, Eickhoff SB, Reetz K (2013) Diminished activation of motor working-memory networks in Parkinson’s disease. PLoS One 8:1–12. doi: 10.1371/journal.pone.0061786 Google Scholar
  99. Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage 60:830–846. doi: 10.1016/j.neuroimage.2011.11.050 PubMedCentralPubMedGoogle Scholar
  100. Ruby P, Decety J (2004) How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emtoions. J Cogn Neurosci 16:988–999. doi: 10.1162/0898929041502661 PubMedGoogle Scholar
  101. Samson AC, Zysset S, Huber O (2008) Cognitive humor processing: different logical mechanisms in nonverbal cartoons—an fMRI study. Soc Neurosci 3:125–140. doi: 10.1080/17470910701745858 PubMedGoogle Scholar
  102. Santangelo V, Belardinelli MO, Spence C, Macaluso E (2008) Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. J Cogn Neurosci 21:2384–2397. doi: 10.1162/jocn.2008.21178 Google Scholar
  103. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240–256. doi: 10.1016/j.neuroimage.2012.08.052 PubMedGoogle Scholar
  104. Saxe R, Carey S, Kanwisher N (2004) Understanding other minds: linking developmental psychology and functional neuroimaging. Annu Rev Psychol 55:87–124. doi: 10.1146/annurev.psych.55.090902.142044 PubMedGoogle Scholar
  105. Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in ‘theory of mind’. NeuroImage 19:1835–1842. doi: 10.1016/S1053-8119(03)00230-1 PubMedGoogle Scholar
  106. Saxe R, Powell LJ (2006) It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci 17:692–699. doi: 10.1111/j.1467-9280.2006.01768.x PubMedGoogle Scholar
  107. Saxe R, Schulz LE, Jiang YV (2006) Reading minds versus following rules: dissociating theory of mind and executive control in the brain. Soc Neurosci 1:284–298. doi: 10.1080/17470910601000446 PubMedGoogle Scholar
  108. Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social and unconstrained cognition. PLoS One 7:1–10. doi: 10.1371/journal.pone.0030920 Google Scholar
  109. Scholz J, Triantafyllou C, Whitfield-Gabrieli S, Brown EN, Saxe R (2009) Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS One 4:1–7. doi: 10.1371/journal.pone.0004869 Google Scholar
  110. Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S (2005) Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114–122. doi: 10.1111/j.0956-7976.2005.00791.x PubMedGoogle Scholar
  111. Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Psychiatry 47:921–929. doi: 10.1097/CHI.0b013e318179964f Google Scholar
  112. Sommer M, Döhnel K, Sodian B, Meinhardt J, Thoermer C, Hajak G (2007) Neural correlates of true and false belief reasoning. NeuroImage 35:1378–1384. doi: 10.1016/j.neuroimage.2007.01.042 PubMedGoogle Scholar
  113. Sperduti M, Delaveau P, Fossati P, Nadel J (2011) Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct Funct 216:151–157. doi: 10.1007/s00429-010-0298-1 PubMedGoogle Scholar
  114. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574. doi: 10.1073/pnas.0800005105 PubMedCentralPubMedGoogle Scholar
  115. Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. NeuroImage 21:318–328. doi: 10.1016/j.neuroimage.2003.08.044 PubMedGoogle Scholar
  116. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16:765–780. doi: 10.1006/nimg.2002.1131 PubMedGoogle Scholar
  117. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analysis. Hum Brrain Mapp 33:1–13. doi: 10.1002/hbm.21186 Google Scholar
  118. Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann BG, Hebebrand J, Daum I, Wiltfang J, Kis B (2010) Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobahav Rev 34:734–743. doi: 10.1016/j.neubiorev.2009.10.009 Google Scholar
  119. Van der Meer L, Groenewold NA, Nolen WA, Pijnenborg M, Aleman A (2011) Inhibit yourself and understand the other: neural basis of distinct processes underlying theory of mind. NeuroImage 56:2364–2374. doi: 10.1016/j.neuroimage.2011.03.053 PubMedGoogle Scholar
  120. Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858. doi: 10.1002/hbm.20547 PubMedGoogle Scholar
  121. Vogeley K, May M, Ritzl A, Falkai P, Zilles K, Fink GR (2004) Neural correlates of first-person perspective as one constituent of human self-consciousness. J Cogn Neurosci 16:817–827. doi: 10.1162/089892904970799 PubMedGoogle Scholar
  122. Vossel S, Thiel CM, Fink GR (2006) Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. NeuroImage 32:1257–1264. doi: 10.1016/j.neuroimage.2006.05.019 PubMedGoogle Scholar
  123. Vossel S, Weidner R, Thiel CM, Fink GR (2008) What is “odd” in Posner’s location-cueing paradigm? Neural responses to unexpected location and feature changes compared. J Cogn Neurosci 21:30–41. doi: 10.1162/jocn.2009.21003 Google Scholar
  124. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416. doi: 10.1016/j.neuroimage.2009.05.005 PubMedGoogle Scholar
  125. Weissman DH, Prado J (2012) Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention. NeuroImage 61:798–804. doi: 10.1016/j.neuroimage.2012.03.032 PubMedGoogle Scholar
  126. Wellman HM, Cross D, Watson J (2001) Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev 72:655–684. doi: 10.1111/1467-8624.00304 PubMedGoogle Scholar
  127. Wimmer H, Perner J (1983) Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13:103–128. doi: 10.1016/0022-0965(85)90051-7 PubMedGoogle Scholar
  128. Young L, Cushman F, Hauser M, Saxe R (2007) The neural basis of the interaction between theory of mind and moral judgment. PNAS 104:8235–8240. doi: 10.1073/pnas.0701408104 PubMedCentralPubMedGoogle Scholar
  129. Young L, Dodell-Feder D, Saxe R (2010) What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia 48:2658–2664. doi: 10.1016/j.neuropsychologia.2010.05.012 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. C. Krall
    • 1
    • 2
    Email author
  • C. Rottschy
    • 3
    • 4
  • E. Oberwelland
    • 1
    • 2
  • D. Bzdok
    • 3
    • 5
  • P. T. Fox
    • 6
    • 7
  • S. B. Eickhoff
    • 3
    • 5
  • G. R. Fink
    • 1
    • 8
  • K. Konrad
    • 1
    • 2
  1. 1.Institute of Neuroscience and Medicine (INM-3)Jülich Research CenterJülichGermany
  2. 2.Department of Child and Adolescent PsychiatryUniversity Hospital AachenAachenGermany
  3. 3.Institute of Neuroscience and Medicine (INM-1)Jülich Research CenterJülichGermany
  4. 4.Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
  5. 5.Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine UniversityDüsseldorfGermany
  6. 6.Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  7. 7.South Texas Veterans Administration Medical CenterSan AntonioUSA
  8. 8.Department of NeurologyUniversity Hospital CologneCologneGermany

Personalised recommendations