Brain Structure and Function

, Volume 220, Issue 4, pp 2423–2439 | Cite as

Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration

  • Ismini E. Papageorgiou
  • Andriani F. Fetani
  • Andrea Lewen
  • Uwe Heinemann
  • Oliver Kann
Original Article


Activation of microglial cells (brain macrophages) soon after status epilepticus has been suggested to be critical for the pathogenesis of mesial temporal lobe epilepsy (MTLE). However, microglial activation in the chronic phase of experimental MTLE has been scarcely addressed. In this study, we questioned whether microglial activation persists in the hippocampus of pilocarpine-treated, epileptic Wistar rats and to which extent it is associated with segmental neurodegeneration. Microglial cells were immunostained for the universal microglial marker, ionized calcium-binding adapter molecule-1 and the activation marker, CD11b (also known as OX42, Mac-1). Using quantitative morphology, i.e., stereology and Neurolucida-based reconstructions, we investigated morphological correlates of microglial activation such as cell number, ramification, somatic size and shape. We find that microglial cells in epileptic rats feature widespread, activation-related morphological changes such as increase in cell number density, massive up-regulation of CD11b and de-ramification. The parameters show heterogeneity in different hippocampal subregions. For instance, de-ramification is most prominent in the outer molecular layer of the dentate gyrus, whereas CD11b expression dominates in hilus. Interestingly, microglial activation only partially correlates with segmental neurodegeneration. Major neuronal death in the hilus, CA3 and CA1 coincides with strong up-regulation of CD11b. However, microglial activation is also observed in subregions that do not feature neurodegeneration, such as the molecular and granular layer of the dentate gyrus. This in vivo study provides solid experimental evidence that microglial cells feature widespread heterogeneous activation that only partially correlates with hippocampal segmental neuronal loss in experimental MTLE.


Microglia CD11b Iba-1 Pilocarpine Neurolucida Stereology 



Ammon’s horn sclerosis


Cornu ammonis subregion 1


Cornu ammonis subregion 3


Complement receptor 3


Dentate gyrus granular layer


Dentate gyrus inner molecular layer


Dentate gyrus outer molecular layer




Hippocampal formation


Ionized calcium-binding adapter molecule-1


Mesial temporal lobe epilepsy


Chronic epileptic rats




Microglial subpopulation in sham rats



This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TR3).

Conflict of interests

IP, AL, UH and OK declare no conflict of interest. AF performed her experimental part during her Master’s studentship in (2). AF’s current position in Chiesi Hellas does not interfere with the current work and declares free of any financial interest.

Supplementary material

429_2014_802_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1066 kb)
429_2014_802_MOESM2_ESM.pdf (690 kb)
Supplementary material 2 (PDF 689 kb)
429_2014_802_MOESM3_ESM.pdf (292 kb)
Supplementary material 3 (PDF 291 kb)
429_2014_802_MOESM4_ESM.pdf (70 kb)
Supplementary material 4 (PDF 70 kb)
429_2014_802_MOESM5_ESM.pdf (94 kb)
Supplementary material 5 (PDF 93 kb)


  1. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591. doi: 10.1016/0306-4522(89)90424-7 PubMedCrossRefGoogle Scholar
  2. Aronica E, Boer K, van Vliet EA, Redeker S, Baayen JC, Spliet WGM, van Rijen PC, Troost D, Lopes da Silva FH, Wadman WJ, Gorter JA (2007) Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 26:497–511. doi: 10.1016/j.nbd.2007.01.015 PubMedCrossRefGoogle Scholar
  3. Beach TG, Woodhurst WB, MacDonald DB, Jones MW (1995) Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 191:27–30. doi: 10.1016/0304-3940(94)11548-1 PubMedCrossRefGoogle Scholar
  4. Becker AJ, Chen J, Zien A, Sochivko D, Normann S, Schramm J, Elger CE, Wiestler OD, Blümcke I (2003) Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy. Eur J Neurosci 18:2792–2802. doi: 10.1111/j.1460-9568.2003.02993.x PubMedCrossRefGoogle Scholar
  5. Blümcke I, Coras R, Miyata H, Özkara C (2012) Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol 22:402–411. doi: 10.1111/j.1750-3639.2012.00583.x PubMedCrossRefGoogle Scholar
  6. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182:21–34. doi: 10.1016/S0014-4886(03)00086-4 PubMedCrossRefGoogle Scholar
  7. Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650–6658PubMedGoogle Scholar
  8. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782. doi: 10.1111/j.1528-1157.1991.tb05533.x PubMedCrossRefGoogle Scholar
  9. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi: 10.1038/nn1472 PubMedCrossRefGoogle Scholar
  10. Devinsky O, Vezzani A, Najjar S, de Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184. doi: 10.1016/j.tins.2012.11.008 PubMedCrossRefGoogle Scholar
  11. Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 120:1031–1043. doi: 10.1083/jcb.120.4.1031 PubMedCrossRefGoogle Scholar
  12. Eder C, Schilling T, Heinemann U, Haas D, Hailer N, Nitsch R (1999) Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 11:4251–4261. doi: 10.1046/j.1460-9568.1999.00852.x PubMedCrossRefGoogle Scholar
  13. Engel J Jr (2006) ILAE classification of epilepsy syndromes. Epilepsy Res 70(Suppl 1):S5–S10. doi: 10.1016/j.eplepsyres.2005.11.014 PubMedCrossRefGoogle Scholar
  14. Estrada FS, Hernández VS, López-Hernández E, Corona-Morales AA, Solís H, Escobar A, Zhang L (2012) Glial activation in a pilocarpine rat model for epileptogenesis: a morphometric and quantitative analysis. Neurosci Lett 514:51–56. doi: 10.1016/j.neulet.2012.02.055 PubMedCrossRefGoogle Scholar
  15. Foresti ML, Arisi GM, Katki K, Montañez A, Sanchez RM, Shapiro LA (2009) Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus. J Neuroinflammation 6:40. doi: 10.1186/1742-2094-6-40 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J (2003) Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation. J Neurotrauma 20:929–941. doi: 10.1089/089771503770195786 PubMedCrossRefGoogle Scholar
  17. Hanisch U-K (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. doi: 10.3389/fncel.2013.00065 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. doi: 10.1038/nn1997 PubMedCrossRefGoogle Scholar
  19. Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann T-N (2000) Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41(Suppl 6):185–189. doi: 10.1111/j.1528-1157.2000.tb01579.x CrossRefGoogle Scholar
  20. Houser CR (1992) Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res Suppl 7:223–234PubMedGoogle Scholar
  21. Howard CV, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy, 2nd edn. GarlandScience/BIOS Scientific Publishers, OxonGoogle Scholar
  22. Hung J, Chansard M, Ousman SS, Nguyen MD, Colicos MA (2010) Activation of microglia by neuronal activity: results from a new in vitro paradigm based on neuronal-silicon interfacing technology. Brain Behav Immun 24:31–40. doi: 10.1016/j.bbi.2009.06.150 PubMedCrossRefGoogle Scholar
  23. Husemann J, Obstfeld A, Febbraio M, Kodama T, Silverstein SC (2001) CD11b/CD18 mediates production of reactive oxygen species by mouse and human macrophages adherent to matrixes containing oxidized LDL. Arterioscler Thromb Vasc Biol 21:1301–1305. doi: 10.1161/hq0801.095150 PubMedCrossRefGoogle Scholar
  24. Ihanus E, Uotila LM, Toivanen A, Varis M, Gahmberg CG (2007) Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4. Blood 109:802–810. doi: 10.1182/blood-2006-04-014878 PubMedCrossRefGoogle Scholar
  25. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9. doi: 10.1016/S0169-328X(98)00040-0 PubMedCrossRefGoogle Scholar
  26. Jamali S, Salzmann A, Perroud N, Ponsole-Lenfant M, Cillario J, Roll P, Roeckel-Trevisiol N, Crespel A, Balzar J, Schlachter K, Gruber-Sedlmayr U, Pataraia E, Baumgartner C, Zimprich A, Zimprich F, Malafosse A, Szepetowski P (2010) Functional variant in complement C3 gene promoter and genetic susceptibility to temporal lobe epilepsy and febrile seizures. PLoS One 5:e12740. doi: 10.1371/journal.pone.0012740 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Janigro D (2012) Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia 53(Suppl 1):26–34. doi: 10.1111/j.1528-1167.2012.03472.x PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jinno S, Kosaka T (2008) Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol 212:440–447. doi: 10.1016/j.expneurol.2008.04.028 PubMedCrossRefGoogle Scholar
  29. Jinno S, Fleischer F, Eckel S, Schmidt V, Kosaka T (2007) Spatial arrangement of microglia in the mouse hippocampus: a stereological study in comparison with astrocytes. Glia 55:1334–1347. doi: 10.1002/glia.20552 PubMedCrossRefGoogle Scholar
  30. Jung K-H, Chu K, Lee S-T, Park K-I, Kim J-H, Kang K-M, Kim S, Jeon D, Kim M, Lee SK, Roh J-K (2011) Molecular alterations underlying epileptogenesis after prolonged febrile seizure and modulation by erythropoietin. Epilepsia 52:541–550. doi: 10.1111/j.1528-1167.2010.02916.x PubMedCrossRefGoogle Scholar
  31. Kann O, Hoffmann A, Schumann RR, Weber JR, Kettenmann H, Hanisch U-K (2004) The tyrosine kinase inhibitor AG126 restores receptor signaling and blocks release functions in activated microglia (brain macrophages) by preventing a chronic rise in the intracellular calcium level. J Neurochem 90:513–525. doi: 10.1111/j.1471-4159.2004.02534.x PubMedCrossRefGoogle Scholar
  32. Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann T-N, Gabriel S, Heinemann U (2005) Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128:2396–2407. doi: 10.1093/brain/awh568 PubMedCrossRefGoogle Scholar
  33. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi: 10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  34. Kharatishvili I, Shan ZY, She DT, Foong S, Kurniawan ND, Reutens DC (2013) MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Struct Funct. doi: 10.1007/s00429-013-0528-4 PubMedGoogle Scholar
  35. Kim J-E, Yeo S-I, Ryu HJ, Kim M-J, Kim D-S, Jo S-M, Kang T-C (2010) Astroglial loss and edema formation in the rat piriform cortex and hippocampus following pilocarpine-induced status epilepticus. J Comp Neurol 518:4612–4628. doi: 10.1002/cne.22482 PubMedCrossRefGoogle Scholar
  36. Lehmann T-N, Gabriel S, Kovacs R, Eilers A, Kivi A, Schulze K, Lanksch WR, Meencke HJ, Heinemann U (2000) Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia 41(Suppl 6):190–194. doi: 10.1111/j.1528-1157.2000.tb01580.x CrossRefGoogle Scholar
  37. Lehmann T-N, Gabriel S, Eilers A, Njunting M, Kovacs R, Schulze K, Lanksch WR, Heinemann U (2001) Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci 14:83–95. doi: 10.1046/j.0953-816x.2001.01632.x PubMedCrossRefGoogle Scholar
  38. Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, Ieda M, Tsuchie K, Taki M, Ishihara K, Tanra AJ, Horiguchi J (2012) Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation 9:56. doi: 10.1186/1742-2094-9-56 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Libbey JE, Kirkman NJ, Wilcox KS, White HS, Fujinami RS (2010) Role for complement in the development of seizures following acute viral infection. J Virol 84:6452–6460. doi: 10.1128/JVI.00422-10 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Longo B, Romariz S, Blanco MM, Vasconcelos JF, Bahia L, Soares MBP, Mello LE, Ribeiro-dos-Santos R (2010) Distribution and proliferation of bone marrow cells in the brain after pilocarpine-induced status epilepticus in mice. Epilepsia 51:1628–1632. doi: 10.1111/j.1528-1167.2010.02570.x PubMedCrossRefGoogle Scholar
  41. Majores M, Schoch S, Lie A, Becker AJ (2007) Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue. Epilepsia 48(Suppl 2):4–12. doi: 10.1111/j.1528-1167.2007.01062.x PubMedCrossRefGoogle Scholar
  42. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A (2011) Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med 270:319–326. doi: 10.1111/j.1365-2796.2011.02431.x PubMedCrossRefGoogle Scholar
  43. Mello LEAM, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995. doi: 10.1111/j.1528-1157.1993.tb02123.x PubMedCrossRefGoogle Scholar
  44. Özkara C, Aronica E (2012) Hippocampal sclerosis. Handb Clin Neurol 108:621–639. doi: 10.1016/B978-0-444-52899-5.00019-8 PubMedCrossRefGoogle Scholar
  45. Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U (2011) Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 59:1706–1718. doi: 10.1002/glia.21217 PubMedCrossRefGoogle Scholar
  46. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109:e197–e205. doi: 10.1073/pnas.1111098109 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego, CAGoogle Scholar
  48. Pernot F, Heinrich C, Barbier L, Peinnequin A, Carpentier P, Dhote F, Baille V, Beaup C, Depaulis A, Dorandeu F (2011) Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 52:2315–2325. doi: 10.1111/j.1528-1167.2011.03273.x PubMedCrossRefGoogle Scholar
  49. Pitkänen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, Gröhn O, Nissinen J (2007) Epileptogenesis in experimental models. Epilepsia 48(Suppl 2):13–20. doi: 10.1111/j.1528-1167.2007.01063.x PubMedCrossRefGoogle Scholar
  50. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535. doi: 10.1016/j.tins.2007.07.007 PubMedCrossRefGoogle Scholar
  51. Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernández-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361. doi: 10.1038/nm1201-1356 PubMedCrossRefGoogle Scholar
  52. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262. doi: 10.1038/nature09615 PubMedCrossRefGoogle Scholar
  53. Ravizza T, Rizzi M, Perego C, Richichi C, Velískôvá J, Moshé SL, De Simoni MG, Vezzani A (2005) Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia 46(Suppl 5):113–117. doi: 10.1111/j.1528-1167.2005.01006.x PubMedCrossRefGoogle Scholar
  54. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160. doi: 10.1016/j.nbd.2007.08.012 PubMedCrossRefGoogle Scholar
  55. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA 105:17151–17156. doi: 10.1073/pnas.0806682105 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Rochefort N, Quenech’du N, Watroba L, Mallat M, Giaume C, Milleret C (2002) Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. J Physiol Paris 96:183–192. doi: 10.1016/S0928-4257(02)00005-0 PubMedCrossRefGoogle Scholar
  57. Roseti C, Fucile S, Lauro C, Martinello K, Bertollini C, Esposito V, Mascia A, Catalano M, Aronica E, Limatola C, Palma E (2013) Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia 54:1834–1844. doi: 10.1111/epi.12354 PubMedCrossRefGoogle Scholar
  58. Scharfman HE, Sollas AL, Berger RE, Goodman JH (2003) Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 90:2536–2547. doi: 10.1152/jn.00251.2003 PubMedCrossRefGoogle Scholar
  59. Schilling T, Nitsch R, Heinemann U, Haas D, Eder C (2001) Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14:463–473. doi: 10.1046/j.0953-816x.2001.01661.x PubMedCrossRefGoogle Scholar
  60. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 PubMedCrossRefGoogle Scholar
  61. Scimemi A, Schorge S, Kullmann DM, Walker MC (2006) Epileptogenesis is associated with enhanced glutamatergic transmission in the perforant path. J Neurophysiol 95:1213–1220. doi: 10.1152/jn.00680.2005 PubMedCrossRefGoogle Scholar
  62. Sekeljic V, Bataveljic D, Stamenkovic S, Ułamek M, Jabłoński M, Radenovic L, Pluta R, Andjus PR (2012) Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct 217:411–420. doi: 10.1007/s00429-011-0336-7 PubMedCrossRefGoogle Scholar
  63. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49(Suppl 2):33–41. doi: 10.1111/j.1528-1167.2008.01491.x PubMedCrossRefGoogle Scholar
  64. Shapiro LA, Perez ZD, Foresti ML, Arisi GM, Ribak CE (2009) Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Res 1266:29–36. doi: 10.1016/j.brainres.2009.02.031 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Shaw JAG, Perry VH, Mellanby J (1990) Tetanus toxin-induced seizures cause microglial activation in rat hippocampus. Neurosci Lett 120:66–69. doi: 10.1016/0304-3940(90)90169-A PubMedCrossRefGoogle Scholar
  66. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406PubMedCentralPubMedGoogle Scholar
  67. Sloviter RS (2008) Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: the importance of the “latent period” and other concepts. Epilepsia 49(Suppl 9):85–92. doi: 10.1111/j.1528-1167.2008.01931.x PubMedCrossRefGoogle Scholar
  68. Sosunov AA, Wu X, McGovern RA, Coughlin DG, Mikell CB, Goodman RR, McKhann GM II (2012) The mTOR pathway is activated in glial cells in mesial temporal sclerosis. Epilepsia 53(Suppl 1):78–86. doi: 10.1111/j.1528-1167.2012.03478.x PubMedCrossRefGoogle Scholar
  69. Steinhäuser C, Seifert G (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 447:227–237. doi: 10.1016/S0014-2999(02)01846-0 PubMedCrossRefGoogle Scholar
  70. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266. doi: 10.1002/1098-1136(200103)33:3<256:AID-GLIA1024>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  71. Téllez-Zenteno JF, Hernández-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:ID 630853. doi:  10.1155/2012/630853
  72. Todd RF III (1996) The continuing saga of complement receptor type 3 (CR3). J Clin Invest 98:1–2. doi: 10.1172/JCI118752 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Tooyama I, Bellier J-P, Park M, Minnasch P, Uemura S, Hisano T, Iwami M, Aimi Y, Yasuhara O, Kimura H (2002) Morphologic study of neuronal death, glial activation, and progenitor cell division in the hippocampus of rat models of epilepsy. Epilepsia 43(Suppl 9):39–43. doi: 10.1046/j.1528-1157.43.s.9.10.x PubMedCrossRefGoogle Scholar
  74. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61:1306–1319. doi: 10.1002/glia.22516 PubMedCrossRefGoogle Scholar
  75. van Strien NM, Cappaert NLM, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10:272–282. doi: 10.1038/nrn2614 PubMedCrossRefGoogle Scholar
  76. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. doi: 10.1038/nrneurol.2010.178 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wennström M, Hellsten J, Ekstrand J, Lindgren H, Tingström A (2006) Corticosterone-induced inhibition of gliogenesis in rat hippocampus is counteracted by electroconvulsive seizures. Biol Psychiatry 59:178–186. doi: 10.1016/j.biopsych.2005.08.032 PubMedCrossRefGoogle Scholar
  78. West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497. doi: 10.1002/ar.1092310411 PubMedCrossRefGoogle Scholar
  79. Wirenfeldt M, Dissing-Olesen L, Babcock AA, Nielsen M, Meldgaard M, Zimmer J, Azcoitia I, Leslie RGQ, Dagnaes-Hansen F, Finsen B (2007) Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 171:617–631. doi: 10.2353/ajpath.2007.061044 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Yang T-T, Lin C, Hsu C-T, Wang T-F, Ke F-Y, Kuo Y-M (2013) Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct Funct 218:1051–1060. doi: 10.1007/s00429-012-0446-x PubMedCrossRefGoogle Scholar
  81. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, Fritschy J-M (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31:4037–4050. doi: 10.1523/JNEUROSCI.6210-10.2011 PubMedCrossRefGoogle Scholar
  82. Zhang W, Huguenard JR, Buckmaster PS (2012) Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy. J Neurosci 32:1183–1196. doi: 10.1523/JNEUROSCI.5342-11.2012 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ismini E. Papageorgiou
    • 1
    • 2
  • Andriani F. Fetani
    • 3
  • Andrea Lewen
    • 1
    • 2
  • Uwe Heinemann
    • 3
  • Oliver Kann
    • 1
    • 2
  1. 1.Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Interdisciplinary Center for Neurosciences (IZN)University of HeidelbergHeidelbergGermany
  3. 3.Institute of NeurophysiologyCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations