Brain Structure and Function

, Volume 220, Issue 5, pp 3067–3073 | Cite as

Molecular imaging reveals epileptogenic Ca2+-channel promoter activation in hippocampi of living mice

  • Rebecca Kulbida
  • Yipeng Wang
  • Eva-Maria Mandelkow
  • Susanne Schoch
  • Albert J. Becker
  • Karen M. J. van LooEmail author
Short Communication


Focal epilepsies often originate in the hippocampal formation of the temporal lobe (temporal lobe epilepsy) and are generally acquired after transient brain insults. Such insults induce cellular and structural reorganization processes of the hippocampus, referred to as epileptogenesis that finally convert the brain spontaneous epileptic. Here, we developed a new molecular imaging strategy in a state-of-the-art animal model to provide insights into key epileptogenic mechanisms. Our new approach combines recombinant adeno-associated virus (rAAV) gene delivery with in vivo bioluminescence imaging. rAAV particles harboring the luciferase reporter gene under control of the minimal T type Ca2+-channel subunit Ca V 3.2-promoter were generated and injected stereotaxically in the hippocampal region of mice. Bioluminescent signals, corresponding to Ca V 3.2 promoter activation, were imaged in vivo in the pilocarpine model of status epilepticus (SE). We detected activation of key Ca V 3.2 promoter motifs at 3 and 10 days after SE but not after the onset of chronic seizures. These data suggest Ca V 3.2 promoter activation as novel anti-epileptogenic target. In more general terms, we have established an experimental approach that allows to follow cerebral gene promoter dynamics longitudinally and to correlate this activity to behavioral parameters in the same mice.


Molecular neuroimaging Epilepsy Pilocarpine animal model Transcriptional channelopathies T type calcium channel CaV3.2 In vivo bioluminescence imaging 



Our work is supported by the Deutsche Forschungsgemeinschaft (SFB 1089 (KvL, SS, AJB), KFO 177 (AJB)), “Unabhängige Forschergruppen in den Neurowissenschaften” (SS), European Science Foundation (EuroEpinomics Consortium (KvL, AJB)), the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreement no 602102 (EPITARGET; SS, AJB), the Else Kröner-Fresenius Foundation (AJB), German Israeli Foundation (AJB), BONFOR (KvL, AJB, SS), German Center for Neurodegenerative Diseases (DZNE; YW, EMM) and MPG (YW, EMM).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Becker AJ, Pitsch J, Sochivko D, Opitz T, Staniek M, Chen CC, Campbell KP, Schoch S, Yaari Y, Beck H (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28:13341–13353CrossRefPubMedGoogle Scholar
  2. Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535CrossRefPubMedGoogle Scholar
  3. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257–1266CrossRefPubMedGoogle Scholar
  4. Goldberg EM, Coulter DA (2013) Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci 14:337–349PubMedCentralCrossRefPubMedGoogle Scholar
  5. Gorter JA, Zurolo E, Iyer A, Fluiter K, van Vliet EA, Baayen JC, Aronica E (2010) Induction of sodium channel Na(x) (SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy. Epilepsia 51:1791–1800CrossRefPubMedGoogle Scholar
  6. Hochgrafe K, Mandelkow EM (2013) Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol 47:868–882CrossRefPubMedGoogle Scholar
  7. Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, Van Noorden CJ, van Tellingen O (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(7–13):30Google Scholar
  8. Lory P, Chemin J (2007) Towards the discovery of novel T-type calcium channel blockers. Expert Opin Ther Targets 11:717–722CrossRefPubMedGoogle Scholar
  9. Loscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62:668–700PubMedCentralCrossRefPubMedGoogle Scholar
  10. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995CrossRefPubMedGoogle Scholar
  11. Neef DW, Turski ML, Thiele DJ (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 8:e1000291PubMedCentralCrossRefPubMedGoogle Scholar
  12. Noe F, Vaghi V, Balducci C, Fitzsimons H, Bland R, Zardoni D, Sperk G, Carli M, During MJ, Vezzani A (2010) Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 17:643–652CrossRefPubMedGoogle Scholar
  13. Pitkanen A, Lukasiuk K (2009) Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14(Suppl 1):16–25CrossRefPubMedGoogle Scholar
  14. Pitkanen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H, Loscher W, Mody I, Schmidt D (2013) Issues related to development of antiepileptogenic therapies. Epilepsia 54(Suppl 4):35–43PubMedCentralCrossRefPubMedGoogle Scholar
  15. Pitsch J, Schoch S, Gueler N, Flor PJ, van der Putten H, Becker AJ (2007) Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy. Neurobiol Dis 26:623–633CrossRefPubMedGoogle Scholar
  16. Richichi C, Brewster AL, Bender RA, Simeone TA, Zha Q, Yin HZ, Weiss JH, Baram TZ (2008) Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiol Dis 29:297–305PubMedCentralCrossRefPubMedGoogle Scholar
  17. Sanabria ER, Su H, Yaari Y (2001) Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J Physiol 532:205–216PubMedCentralCrossRefPubMedGoogle Scholar
  18. Scorza FA, Arida RM, Naffah-Mazzacoratti Mda G, Scerni DA, Calderazzo L, Cavalheiro EA (2009) The pilocarpine model of epilepsy: what have we learned? Anais da Academia Brasileira de Ciencias 81:345–365CrossRefPubMedGoogle Scholar
  19. Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655PubMedGoogle Scholar
  20. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335CrossRefPubMedGoogle Scholar
  21. van Loo KM, Schaub C, Pernhorst K, Yaari Y, Beck H, Schoch S, Becker AJ (2012) Transcriptional regulation of T-type calcium channel CaV3.2: bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein-silencing transcription factor (REST). J Biol Chem 287:15489–15501PubMedCentralCrossRefPubMedGoogle Scholar
  22. Yaari Y, Yue C, Su H (2007) Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J Physiol 580:435–450PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rebecca Kulbida
    • 1
  • Yipeng Wang
    • 2
    • 3
  • Eva-Maria Mandelkow
    • 2
    • 3
  • Susanne Schoch
    • 1
  • Albert J. Becker
    • 1
  • Karen M. J. van Loo
    • 1
    Email author
  1. 1.Section for Translational Epilepsy Research, Department of NeuropathologyUniversity of Bonn Medical CenterBonnGermany
  2. 2.DZNE, German Center for Neurodegenerative DiseasesBonnGermany
  3. 3.CAESAR Research CenterBonnGermany

Personalised recommendations