Brain Structure and Function

, Volume 220, Issue 4, pp 2209–2221 | Cite as

Dietary magnesium restriction reduces amygdala–hypothalamic GluN1 receptor complex levels in mice

  • Maryam Ghafari
  • Nigel Whittle
  • András G. Miklósi
  • Caroline Kotlowsky
  • Claudia Schmuckermair
  • Johannes Berger
  • Keiryn L. Bennett
  • Nicolas Singewald
  • Gert LubecEmail author
Original Article


Reduced daily intake of magnesium (Mg2+) is suggested to contribute to depression. Indeed, preclinical studies show dietary magnesium restriction (MgR) elicits enhanced depression-like behaviour establishing a causal relationship. Amongst other mechanisms, Mg2+ gates the activity of N-methyl-d-asparte (NMDA) receptors; however, it is not known whether reduced dietary Mg2+ intake can indeed affect brain NMDA receptor complexes. Thus, the aim of the current study was to reveal whether MgR induces changes in brain NMDA receptor subunit composition that would indicate altered NMDA receptor regulation. The results revealed that enhanced depression-like behaviour elicited by MgR was associated with reduced amygdala–hypothalamic protein levels of GluN1-containing NMDA complexes. No change in GluN1 mRNA levels was observed indicating posttranslational changes were induced by dietary Mg2+ restriction. To reveal possible protein interaction partners, GluN1 immunoprecipitation and proximity ligation assays were carried out revealing the expected GluN1 subunit association with GluN2A, GluN2B, but also novel interactions with GluA1, GluA2 in addition to known downstream signalling proteins. Chronic paroxetine treatment in MgR mice normalized enhanced depression-like behaviour, but did not alter protein levels of GluN1-containing NMDA receptors, indicating targets downstream of the NMDA receptor. Collectively, present data demonstrate that dietary MgR alters brain levels of GluN1-containing NMDA receptor complexes, containing GluN2A, GluN2B, AMPA receptors GluA1, GluA2 and several protein kinases. These data indicate that the modulation of dietary Mg2+ intake may alter the function and signalling of this receptor complex indicating its involvement in the enhanced depression-like behaviour elicited by MgR.


NMDA Receptor complexes Dietary magnesium restriction Depression Forced swim test Amygdala Hypothalamus 



This work was funded partially by the Austrian Science Fund (FWF): P22931-B18 (to NS and GL), W 1206-B18 SPIN (to NS) and partially sponsored by the Verein zur Durchführung der wissenschaftlichen Forschung auf dem Gebiet der Neonatologie und Kinder intensiv Medizin.

Supplementary material

429_2014_779_MOESM1_ESM.jpg (73 kb)
Supplementary material 1 (JPEG 72 kb)
429_2014_779_MOESM2_ESM.jpg (25.5 mb)
Supplementary material 2 (JPEG 26158 kb)
429_2014_779_MOESM3_ESM.jpg (77 kb)
Supplementary material 3 (JPEG 77 kb)
429_2014_779_MOESM4_ESM.jpg (60 kb)
Supplementary material 4 (JPEG 59 kb)
429_2014_779_MOESM5_ESM.ppt (68 kb)
Supplementary material 5 (PPT 68 kb)
429_2014_779_MOESM6_ESM.ppt (110 kb)
Supplementary material 6 (PPT 109 kb)
429_2014_779_MOESM7_ESM.xls (99 kb)
Supplementary material 7 (XLS 99 kb)


  1. Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M, Natsume R, Watanabe M, Sakimura K (2009) NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 29(35):10869–10882. doi: 10.1523/JNEUROSCI.5531-08.2009 PubMedCrossRefGoogle Scholar
  2. Augusto E, Matos M, Sevigny J, El-Tayeb A, Bynoe MS, Muller CE, Cunha RA, Chen JF (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33(28):11390–11399. doi: 10.1523/JNEUROSCI.5817-12.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bardgett ME, Schultheis PJ, McGill DL, Richmond RE, Wagge JR (2005) Magnesium deficiency impairs fear conditioning in mice. Brain Res 1038(1):100–106PubMedCrossRefGoogle Scholar
  4. Barria A, Derkach V, Soderling T (1997) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272(52):32727–32730PubMedCrossRefGoogle Scholar
  5. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411(6839):801–805. doi: 10.1038/35081080 PubMedCrossRefGoogle Scholar
  6. Bayer KU, LeBel E, McDonald GL, O’Leary H, Schulman H, De Koninck P (2006) Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 26(4):1164–1174. doi: 10.1523/JNEUROSCI.3116-05.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bennett KL, Funk M, Tschernutter M, Breitwieser FP, Planyavsky M, Ubaida Mohien C, Muller A, Trajanoski Z, Colinge J, Superti-Furga G, Schmidt-Erfurth U (2011) Proteomic analysis of human cataract aqueous humour: comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens. J Proteomics 74(2):151–166PubMedCrossRefGoogle Scholar
  8. Boyce-Rustay JM, Holmes A (2006) Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31(11):2405–2414. doi: 10.1038/sj.npp.1301039 PubMedCrossRefGoogle Scholar
  9. Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X, Liang S (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98(4):1126–1140PubMedCrossRefGoogle Scholar
  10. Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, Hortnagl H, Riva MA, Sprengel R, Gass P (2008) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 22(9):3129–3134. doi: 10.1096/fj.08-106450 PubMedCrossRefGoogle Scholar
  11. Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology. Oxford, New York, pp 518Google Scholar
  12. Cowan JA (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15(3):225–235PubMedCrossRefGoogle Scholar
  13. Duncan GE, Inada K, Farrington JS, Koller BH, Moy SS (2009) Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Brain Res 1265:186–195. doi: 10.1016/j.brainres.2009.02.002 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dunn RW, Corbett R, Fielding S (1989) Effects of 5-HT1A receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. Eur J Pharmacol 169(1):1–10. pii:0014-2999(89)90811-XPubMedCrossRefGoogle Scholar
  15. Eby GA, Eby KL (2006) Rapid recovery from major depression using magnesium treatment. Med Hypotheses 67(2):362–370PubMedCrossRefGoogle Scholar
  16. Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32(4):653–658PubMedGoogle Scholar
  17. Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4(2–3):60–72PubMedGoogle Scholar
  18. Ghafari M, Patil SS, Hoger H, Pollak A, Lubec G (2011) NMDA-complexes linked to spatial memory performance in the Barnes maze in CD1 mice. Behav Brain Res 221(1):142–148PubMedCrossRefGoogle Scholar
  19. Ghafari M, Falsafi SK, Hoeger H, Lubec G (2012a) Hippocampal levels of GluR1 and GluR2 complexes are modulated by training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 217(2):353–362PubMedCrossRefGoogle Scholar
  20. Ghafari M, Hoger H, Keihan Falsafi S, Russo-Schlaff N, Pollak A, Lubec G (2012b) Mass spectrometrical identification of hippocampal NMDA receptor subunits NR1, NR2A-D and five novel phosphorylation sites on NR2A and NR2B. J Proteome Res 11(3):1891–1896. doi: 10.1021/pr201099u PubMedCrossRefGoogle Scholar
  21. Gould TD, O’Donnell KC, Dow ER, Du J, Chen G, Manji HK (2008) Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 54(3):577–587. doi: 10.1016/j.neuropharm.2007.11.002 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hackbarth H, Kuppers N, Bohnet W (2000) Euthanasia of rats with carbon dioxide––animal welfare aspects. Lab Anim 34(1):91–96PubMedCrossRefGoogle Scholar
  23. Haddad JJ (2005) N-methyl-d-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 77(4):252–282PubMedCrossRefGoogle Scholar
  24. Kang SU, Fuchs K, Sieghart W, Lubec G (2008) Gel-based mass spectrometric analysis of recombinant GABA(A) receptor subunits representing strongly hydrophobic transmembrane proteins. J Proteome Res 7(8):3498–3506PubMedCrossRefGoogle Scholar
  25. Kantak KM (1988) Magnesium deficiency alters aggressive behavior and catecholamine function. Behav Neurosci 102(2):304–311PubMedCrossRefGoogle Scholar
  26. Kobayashi K, Haneda E, Higuchi M, Suhara T, Suzuki H (2012) Chronic fluoxetine selectively upregulates dopamine D(1)-like receptors in the hippocampus. Neuropsychopharmacology 37(6):1500–1508. doi: 10.1038/npp.2011.335 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Koenig JH, Ikeda K (1996) Synaptic vesicles have two distinct recycling pathways. J Cell Biol 135(3):797–808PubMedCrossRefGoogle Scholar
  28. Kreis P, Barnier JV (2009) PAK signalling in neuronal physiology. Cell Signal 21(3):384–393. doi: 10.1016/j.cellsig.2008.11.001 PubMedCrossRefGoogle Scholar
  29. Layer RT, Popik P, Olds T, Skolnick P (1995) Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 52(3):621–627 (pii:0091-3057(95)00155-P)PubMedCrossRefGoogle Scholar
  30. Leonard AS, Bayer KU, Merrill MA, Lim IA, Shea MA, Schulman H, Hell JW (2002) Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-d-aspartate receptors by calcium/calmodulin and alpha-actinin. J Biol Chem 277(50):48441–48448. doi: 10.1074/jbc.M205164200 PubMedCrossRefGoogle Scholar
  31. Maj J, Rogoz Z, Skuza G, Sowinska H (1992) The effect of CGP 37849 and CGP 39551, competitive NMDA receptor antagonists, in the forced swimming test. Pol J Pharmacol Pharm 44(4):337–346PubMedCrossRefGoogle Scholar
  32. Merrill MA, Chen Y, Strack S, Hell JW (2005) Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci 26(12):645–653. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  33. Murck H (2002) Magnesium and affective disorders. Nutritional Neurosci 5(6):375–389CrossRefGoogle Scholar
  34. Murck H (2013) Ketamine, magnesium and major depression––from pharmacology to pathophysiology and back. J Psychiatr Res 47(7):955–965. doi: 10.1016/j.jpsychires.2013.02.015 PubMedCrossRefGoogle Scholar
  35. Muroyama A, Inaka M, Matsushima H, Sugino H, Marunaka Y, Mitsumoto Y (2009) Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6N mice. Neurosci Res 63(1):72–75PubMedCrossRefGoogle Scholar
  36. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021PubMedCrossRefGoogle Scholar
  37. Plaznik A, Palejko W, Nazar M, Jessa M (1994) Effects of antagonists at the NMDA receptor complex in two models of anxiety. Eur Neuropsychopharmacol 4(4):503–512PubMedCrossRefGoogle Scholar
  38. Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E (1997) Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36(1):31–37. pii:S0028390896001578PubMedCrossRefGoogle Scholar
  39. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95(24):14476–14481PubMedCentralPubMedCrossRefGoogle Scholar
  40. Richardson-Jones JW, Craige CP, Nguyen TH, Kung HF, Gardier AM, Dranovsky A, David DJ, Guiard BP, Beck SG, Hen R, Leonardo ED (2011) Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J Neurosci 31(16):6008–6018. doi: 10.1523/JNEUROSCI.5836 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Saatman KE, Bareyre FM, Grady MS, McIntosh TK (2001) Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J Neuropathol Exp Neurol 60(2):183–194PubMedGoogle Scholar
  42. Sartori SB, Whittle N, Hetzenauer A, Singewald N (2012) Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology 62(1):304–312PubMedCentralPubMedCrossRefGoogle Scholar
  43. Singewald N, Sinner C, Hetzenauer A, Sartori SB, Murck H (2004) Magnesium-deficient diet alters depression- and anxiety-related behavior in mice––influence of desipramine and Hypericum perforatum extract. Neuropharmacology 47(8):1189–1197PubMedCrossRefGoogle Scholar
  44. Sowa-Kucma M, Szewczyk B, Sadlik K, Piekoszewski W, Trela F, Opoka W, Poleszak E, Pilc A, Nowak G (2013) Zinc, magnesium and NMDA receptor alterations in the hippocampus of suicide victims. J Affect Disord 151(3):924–931. doi: 10.1016/j.jad.2013.08.009 PubMedCrossRefGoogle Scholar
  45. Spasov AA, Iezhitsa IN, Kharitonova MV, Kravchenko MS (2008) Depression-like and anxiety-related behaviour of rats fed with magnesium-deficient diet. Zh Vyssh Nerv Deiat Im I P Pavlova 58(4):476–485PubMedGoogle Scholar
  46. Tan SE, Wenthold RJ, Soderling TR (1994) Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J Neurosci 14(3 Pt 1):1123–1129PubMedGoogle Scholar
  47. Tang TT, Badger JD 2nd, Roche PA, Roche KW (2010) Novel approach to probe subunit-specific contributions to N-methyl-d-aspartate (NMDA) receptor trafficking reveals a dominant role for NR2B in receptor recycling. J Biol Chem 285(27):20975–20981. doi: 10.1074/jbc.M110.102210 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51(2):111–118. doi: 10.2144/000113719 PubMedCentralPubMedGoogle Scholar
  49. Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185(1):1–10. doi: 10.1016/0014-2999(90)90204-J PubMedCrossRefGoogle Scholar
  50. Weinhofer I, Forss-Petter S, Zigman M, Berger J (2002) Cholesterol regulates ABCD2 expression: implications for the therapy of X-linked adrenoleukodystrophy. Hum Mol Genet 11(22):2701–2708PubMedCrossRefGoogle Scholar
  51. Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16(6):1982–1989PubMedGoogle Scholar
  52. Whittle N, Li L, Chen WQ, Yang JW, Sartori SB, Lubec G, Singewald N (2011) Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 40(4):1231–1248PubMedCrossRefGoogle Scholar
  53. Wlaz P, Kasperek R, Wlaz A, Szumilo M, Wrobel A, Nowak G, Poleszak E (2011) NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice. Pharmacol Rep 63(6):1526–1532PubMedCrossRefGoogle Scholar
  54. Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA, Soderling TR (1995) Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-d-aspartate glutamate receptors. Proc Natl Acad Sci USA 92(5):1376–1380PubMedCentralPubMedCrossRefGoogle Scholar
  55. Zukin RS, Bennett MV (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci 18(7):306–313. doi: 10.1016/0166-2236(95)93920-S PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maryam Ghafari
    • 1
  • Nigel Whittle
    • 2
  • András G. Miklósi
    • 1
  • Caroline Kotlowsky
    • 1
  • Claudia Schmuckermair
    • 2
  • Johannes Berger
    • 3
  • Keiryn L. Bennett
    • 4
  • Nicolas Singewald
    • 2
  • Gert Lubec
    • 1
    Email author
  1. 1.Department of PediatricsMedical University of ViennaViennaAustria
  2. 2.Department of Pharmacology and Toxicology and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
  3. 3.Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
  4. 4.CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria

Personalised recommendations