Brain Structure and Function

, Volume 220, Issue 3, pp 1807–1821 | Cite as

A new window to understanding individual differences in reward sensitivity from attentional networks

  • V. Costumero
  • A. Barrós-Loscertales
  • J. C. Bustamante
  • P. Fuentes
  • P. Rosell-Negre
  • N. Ventura-Campos
  • C. Ávila
Original Article

Abstract

Existing evidence suggests that the presence of reward cues modifies the activity in attentional networks, however, the nature of these influences remains poorly understood. Here, we performed independent component analysis (ICA) in two fMRI datasets corresponding to two incentive delay tasks, which compared the response to reward (money and erotic pictures) and neutral cues, and yielded activations in the ventral striatum using a general linear model approach. Across both experiments, ICA revealed that both the right frontoparietal network and default mode network time courses were positively and negatively modulated by reward cues, respectively. Moreover, this dual neural response pattern was enhanced in individuals with strong reward sensitivity. Therefore, ICA may be a complementary tool to investigate the relevant role of attentional networks on reward processing, and to investigate reward sensitivity in normal and pathological populations.

Keywords

Functional connectivity Independent component analysis Reward Sensitivity to reward Frontoparietal network Default mode network 

Notes

Acknowledgments

This research was supported by the Brainglot project of the CONSOLIDER-INGENIO 2010 Programme (CSD2007-00012). Also, the project was supported by grants PSI2010-20168 from MINECO, P1·1B2011-09 from Universitat Jaume I to CA, and Grants 040/2011 from Spanish National Drug Strategy Ministerio de Sanidad y Consumo, GV/2012/042 from the GeneralitatValenciana and PSI2012-33054 from Ministerio de Economía y Competitividad to ABL.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2014_760_MOESM1_ESM.docx (680 kb)
Supplementary material 1 (DOCX 679 kb)

References

  1. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2PubMedCentralPubMedGoogle Scholar
  2. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ávila C (2001) Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of Gray (1981, 1987) and of Patterson and Newman (1993). J Pers Soc Psychol 80:311–324CrossRefPubMedGoogle Scholar
  4. Barrós-Loscertales A, Meseguer V, Sanjuán A, Belloch V, Parcet MA, Torrubia R, Ávila C (2006) Striatum gray matter reduction in males with an overactive behavioral activation system. Eur J Neurosci 24:2071–2074CrossRefPubMedGoogle Scholar
  5. Barrós-Loscertales A, Ventura-Campos N, Sanjuán-Tomás A, Belloch V, Parcet MA, Avila C (2010) Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing. Soc Cogn Affect Neurosci 5:18–28CrossRefPubMedCentralPubMedGoogle Scholar
  6. Beaver JD, Lawrence AD, Van Ditzhuijzen J, Davis MH, Woods A, Calder AJ (2006) Individual differences in reward drive predict neural responses to images of food. J Neurosci 26:5160–5166CrossRefPubMedGoogle Scholar
  7. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159CrossRefPubMedGoogle Scholar
  8. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739CrossRefPubMedCentralPubMedGoogle Scholar
  9. Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16:106–113CrossRefPubMedCentralPubMedGoogle Scholar
  10. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151CrossRefPubMedGoogle Scholar
  11. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:S163–S172CrossRefPubMedCentralPubMedGoogle Scholar
  12. Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Front Behav Neurosci 3:21CrossRefPubMedCentralPubMedGoogle Scholar
  13. Caseras X, Ávila C, Torrubia R (2003) The measurement of individual differences in behavioural inhibition and behavioural activation systems: a comparison of personality scales. Pers Individ Dif 34:999–1013CrossRefGoogle Scholar
  14. Chica AB, Bartolomeo P, Lupiáñez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123CrossRefPubMedGoogle Scholar
  15. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMedGoogle Scholar
  16. Costumero V, Barrós-Loscertales A, Bustamante JC, Ventura-Campos N, Fuentes P, Rosell-Negre P, Avila C (2013) Reward sensitivity is associated with brain activity during erotic stimulus processing. PLoS One 8:e66940CrossRefPubMedCentralPubMedGoogle Scholar
  17. Dang LC, O’Neil JP, Jagust WJ (2012) Dopamine supports coupling of attention-related networks. J Neurosci 32:9582–9587CrossRefPubMedCentralPubMedGoogle Scholar
  18. Derryberry D, Reed MA (1994) Temperament and attention: orienting toward and away from positive and negative signals. J Pers Soc Psychol 66:1128–1139CrossRefPubMedGoogle Scholar
  19. Diekhof EK, Kaps L, Falkai P, Gruber O (2012) The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude: an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50:1252–1266CrossRefPubMedGoogle Scholar
  20. Engelmann JB, Damaraju E, Padmala S, Pessoa L (2009) Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Front Hum Neurosci 3:4CrossRefPubMedCentralPubMedGoogle Scholar
  21. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095CrossRefPubMedCentralPubMedGoogle Scholar
  22. Ernst M, Pine DS, Hardin M (2006) Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med 36:299–312CrossRefPubMedCentralPubMedGoogle Scholar
  23. Fischer H, Nyberg L, Karlsson S, Karlsson P, Brehmer Y, Rieckmann A, MacDonald SWS, Farde L, Bäckman L (2010) Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory. Biol Psychiatry 67:575–580CrossRefPubMedGoogle Scholar
  24. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  25. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258CrossRefPubMedCentralPubMedGoogle Scholar
  26. Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, Duzel E (2011) Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. J Neurosci 31:7867–7875CrossRefPubMedCentralPubMedGoogle Scholar
  27. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26CrossRefPubMedCentralPubMedGoogle Scholar
  28. Hahn T, Dresler T, Ehlis AC, Plichta MM, Heinzel S, Polak T, Lesch KP, Breuer F, Jakob PM, Fallgatter AJ (2009) Neural response to reward anticipation is modulated by Gray’s impulsivity. Neuroimage 46:1148–1153CrossRefPubMedGoogle Scholar
  29. Harrison BJ, Pujol J, Contreras-Rodríguez O, Soriano-Mas C, López-Solà M, Deus J, Ortiz H, Blanco-Hinojo L, Alonso P, Hernández-Ribas R et al (2011) Task-induced deactivation from rest extends beyond the default mode brain network. PLoS One 6:e22964CrossRefPubMedCentralPubMedGoogle Scholar
  30. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222CrossRefPubMedGoogle Scholar
  31. Ivanov I, Liu X, Clerkin S, Schulz K, Friston K, Newcorn JH, Fan J (2012) Effects of motivation on reward and attentional networks: an fMRI study. Brain Behav 2:741–753CrossRefPubMedCentralPubMedGoogle Scholar
  32. Jimura K, Locke HS, Braver TS (2010) Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proc Natl Acad Sci USA 107:8871–8876CrossRefPubMedCentralPubMedGoogle Scholar
  33. Juárez M, Kiehl KA, Calhoun VD (2012) Intrinsic limbic and paralimbic networks are associated with criminal psychopathy. Hum Brain Mapp 00:1–10Google Scholar
  34. Kim D, Manoach DS, Mathalon DH, Turner JA, Mannell M, Brown GG, Ford JM, Gollub RL, White T, Wible C et al (2009) Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp 30:3795–3811CrossRefPubMedCentralPubMedGoogle Scholar
  35. Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417CrossRefPubMedGoogle Scholar
  36. Knutson B, Greer SM (2008) Anticipatory affect: neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci 363:3771–3786CrossRefPubMedCentralPubMedGoogle Scholar
  37. Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159PubMedGoogle Scholar
  38. Krebs RM, Boehler CN, Roberts KC, Song AW, Woldorff MG (2012) The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex 22:607–615CrossRefPubMedCentralPubMedGoogle Scholar
  39. Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485CrossRefPubMedGoogle Scholar
  40. Kruglanski A, Shah J, Fishbach A, Friedman R, Chun WY, Sleeth-Kepple D (2002) A theory of goal systems. Adv Exp Soc Psychol 34:331–378CrossRefGoogle Scholar
  41. Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139:870–900CrossRefPubMedCentralPubMedGoogle Scholar
  42. Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266CrossRefPubMedGoogle Scholar
  43. Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 35:1219–1236CrossRefPubMedCentralPubMedGoogle Scholar
  44. Locke HS, Braver TS (2008) Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn Affect Behav Neurosci 8:99–112CrossRefPubMedGoogle Scholar
  45. Luman M, Van Meel CS, Oosterlaan J, Geurts HM (2012) Reward and punishment sensitivity in children with ADHD: validating the sensitivity to punishment and sensitivity to reward questionnaire for children (SPSRQ-C). J Abnorm Child Psychol 40:145–157CrossRefPubMedCentralPubMedGoogle Scholar
  46. Mohanty A, Gitelman DR, Small DM, Mesulam MM (2008) The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb Cortex 18:2604–2613CrossRefPubMedCentralPubMedGoogle Scholar
  47. Nagano-Saito A, Liu J, Doyon J, Dagher A (2009) Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 458:1–5CrossRefPubMedGoogle Scholar
  48. Padmala S, Pessoa L (2011) Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. J Cogn Neurosci 23:3419–3432CrossRefPubMedCentralPubMedGoogle Scholar
  49. Parvaz MA, Konova AB, Tomasi D, Volkow ND, Goldstein RZ (2012) Structural integrity of the prefrontal cortex modulates electrocortical sensitivity to reward. J Cogn Neurosci 24:1560–1570CrossRefPubMedCentralPubMedGoogle Scholar
  50. Patterson CM, Newman JP (1993) Reflectivity and learning from aversive events: toward a psychological mechanism for the syndromes of disinhibition. Psychol Rev 100:716–736CrossRefPubMedGoogle Scholar
  51. Patterson CM, Kosson DS, Newman JP (1987) Reaction to punishment, reflectivity, and passive avoidance learning in extraverts. J Pers Soc Psychol 52:565–575CrossRefPubMedGoogle Scholar
  52. Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13:160–166CrossRefPubMedCentralPubMedGoogle Scholar
  53. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89CrossRefPubMedCentralPubMedGoogle Scholar
  54. Pickering AD, Gray JA (2001) Dopamine, appetitive reinforcement, and the neuropsychology of human learning: An individual differences approach. In: Eliasz A, Angleitner A (eds) Advances in Research on Temperament. PABST Science Publishers, Lengerich, pp 113–149Google Scholar
  55. Ptak R, Schnider A (2010) The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. J Neurosci 30:12557–12565CrossRefPubMedGoogle Scholar
  56. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090 (discussion 1097–9)CrossRefPubMedGoogle Scholar
  57. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682CrossRefPubMedCentralPubMedGoogle Scholar
  58. Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, Di Giorgio A, Gelao B, Lo Bianco L, Papazacharias A et al (2010) Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia. Neuropsychopharmacology 35:904–912CrossRefPubMedCentralPubMedGoogle Scholar
  59. Schultz W, Tremblay L, Hollerman JR (1998) Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 37:421–429CrossRefPubMedGoogle Scholar
  60. Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinf 6:10CrossRefGoogle Scholar
  61. Sescousse G, Caldú X, Segura B, Dreher JC (2013) Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev 37:681–696CrossRefPubMedGoogle Scholar
  62. Small DM, Gitelman D, Simmons K, Bloise SM, Parrish T, Mesulam MM (2005) Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cereb Cortex 15:1855–1865CrossRefPubMedGoogle Scholar
  63. Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science 240:338–340CrossRefPubMedGoogle Scholar
  64. Spreng RN (2012) The fallacy of a “task-negative” network. Front Psychol 3:145CrossRefPubMedCentralPubMedGoogle Scholar
  65. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317CrossRefPubMedCentralPubMedGoogle Scholar
  66. Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G (2012) Reward prediction error signaling in posterior dorsomedial striatum is action specific. J Neurosci 32:10296–10305CrossRefPubMedCentralPubMedGoogle Scholar
  67. Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401CrossRefPubMedGoogle Scholar
  68. Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 54:3101–3110CrossRefPubMedCentralPubMedGoogle Scholar
  69. Torrubia R, Avila C, Molto J, Caseras X (2001) The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers Individ Dif 31:837–862CrossRefGoogle Scholar
  70. Van den Heuvel OA, Groenewegen HJ, Barkhof F, Lazeron RHC, Van Dyck R, Veltman DJ (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. Neuroimage 18:367–374CrossRefPubMedGoogle Scholar
  71. Van Lankveld JJDM, Smulders FTY (2008) The effect of visual sexual content on the event-related potential. Biol Psychol 79:200–208CrossRefPubMedGoogle Scholar
  72. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342CrossRefPubMedCentralPubMedGoogle Scholar
  73. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108:15037–15042CrossRefPubMedCentralPubMedGoogle Scholar
  74. Wager TD, Jonides J, Reading S (2004) Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22:1679–1693CrossRefPubMedGoogle Scholar
  75. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with “reward”. J Neurochem 82:721–735CrossRefPubMedGoogle Scholar
  76. Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27:4832–4838CrossRefPubMedGoogle Scholar
  77. Xu J, Potenza MN, Calhoun VD (2013) Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Front Neurosci 7:154CrossRefPubMedCentralPubMedGoogle Scholar
  78. Ye Z, Doñamayor N, Münte TF (2014) Brain network of semantic integration in sentence reading: Insights from independent component analysis and graph theoretical analysis. Hum Brain Mapp 35:367–376Google Scholar
  79. Yeung N, Sanfey AG (2004) Independent coding of reward magnitude and valence in the human brain. J Neurosci 24:6258–6264CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. Costumero
    • 1
  • A. Barrós-Loscertales
    • 1
  • J. C. Bustamante
    • 1
  • P. Fuentes
    • 1
  • P. Rosell-Negre
    • 1
  • N. Ventura-Campos
    • 1
  • C. Ávila
    • 1
  1. 1.Departamento de Psicología Básica, Clínica y PsicobiologíaUniversitat Jaume ICastelló de la PlanaSpain

Personalised recommendations