Brain Structure and Function

, Volume 220, Issue 3, pp 1739–1757 | Cite as

Aging and response conflict solution: behavioural and functional connectivity changes

  • Robert LangnerEmail author
  • Edna C. Cieslik
  • Simone D. Behrwind
  • Christian Roski
  • Svenja Caspers
  • Katrin Amunts
  • Simon B. Eickhoff
Original Article


Healthy aging has been found associated with less efficient response conflict solution, but the cognitive and neural mechanisms have remained elusive. In a two-experiment study, we first examined the behavioural consequences of this putative age-related decline for conflicts induced by spatial stimulus–response incompatibility. We then used resting-state functional magnetic resonance imaging data from a large, independent sample of adults (n = 399; 18–85 years) to investigate age differences in functional connectivity between the nodes of a network previously found associated with incompatibility-induced response conflicts in the very same paradigm. As expected, overcoming interference from conflicting response tendencies took longer in older adults, even after accounting for potential mediator variables (general response speed and accuracy, motor speed, visuomotor coordination ability, and cognitive flexibility). Experiment 2 revealed selective age-related decreases in functional connectivity between bilateral anterior insula, pre-supplementary motor area, and right dorsolateral prefrontal cortex. Importantly, these age effects persisted after controlling for regional grey-matter atrophy assessed by voxel-based morphometry. Meta-analytic functional profiling using the BrainMap database showed these age-sensitive nodes to be more strongly linked to highly abstract cognition, as compared with the remaining network nodes, which were more strongly linked to action-related processing. These findings indicate changes in interregional coupling with age among task-relevant network nodes that are not specifically associated with conflict resolution per se. Rather, our behavioural and neural data jointly suggest that healthy aging is associated with difficulties in properly activating non-dominant but relevant task schemata necessary to exert efficient cognitive control over action.


Cognitive control Adult age differences Resting-state fMRI Stimulus–response compatibility BrainMap behavioural domains Quantitative reverse inference 



The study was in part supported by the Human Brain Project (R01-MH074457-01A1, S.B.E.), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model, S.B.E), the Helmholtz Alliance for Mental Health in an Aging Society (HelMA, K.A.), and the German Research Foundation (DFG: EI 816/4-1, S.B.E.; and LA 3071/3-1, R.L. & S.B.E.).

Supplementary material

429_2014_758_MOESM1_ESM.pdf (112 kb)
Online Resource 1 Supplementary results of the quantitative functional profiling (Fig. S1) and the connectivity analysis in an emotion-related control network (Table S1). (PDF 111 kb) (PDF 111 kb)
429_2014_758_MOESM2_ESM.pdf (102 kb)
Online Resource 2 Supplementary methods of the exploratory whole-brain connectivity analysis. (PDF 102 kb)
429_2014_758_MOESM3_ESM.pdf (84 kb)
Online Resource 3 Supplementary methods of the voxel-based morphometry analysis and the control analysis for the influence of morphological parameters on functional connectivity. (PDF 83 kb)


  1. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935. doi: 10.1016/j.neuron.2007.10.038 PubMedCentralPubMedGoogle Scholar
  2. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851PubMedGoogle Scholar
  3. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244PubMedGoogle Scholar
  4. Behrwind SD, Dafotakis M, Halfter S, Hobusch K, Berthold-Losleben M, Cieslik EC, Eickhoff SB (2011) Executive control in chronic schizophrenia: a perspective from manual stimulus–response compatibility task performance. Behav Brain Res 223:24–29. doi: 10.1016/j.bbr.2011.04.009 PubMedCentralPubMedGoogle Scholar
  5. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93PubMedGoogle Scholar
  6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedGoogle Scholar
  7. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739. doi: 10.1073/pnas.0911855107 PubMedCentralPubMedGoogle Scholar
  8. Bonin-Guillaume S, Possamai CA, Blin O, Hasbroucq T (2000) Stimulus preprocessing, response selection, and motor adjustment in the elderly: an additive factor analysis. Cah Psychol Cogn 19:245–255Google Scholar
  9. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi: 10.1196/annals.1440.011 PubMedGoogle Scholar
  10. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217:783–796PubMedCentralPubMedGoogle Scholar
  11. Bzdok D, Langner R, Schilbach L, Engemann DA, Laird AR, Fox PT, Eickhoff SB (2013a) Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci 7:232. doi: 10.3389/fnhum.2013.00232 PubMedCentralPubMedGoogle Scholar
  12. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Laird AR, Fox PT, Zilles K, Eickhoff SB (2013b) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392PubMedGoogle Scholar
  13. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100PubMedGoogle Scholar
  14. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448PubMedGoogle Scholar
  15. Chen NK, Chou YH, Song AW, Madden DJ (2009) Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct Funct 213:571–585. doi: 10.1007/s00429-009-0218-4 PubMedCentralPubMedGoogle Scholar
  16. Cieslik EC, Zilles K, Kurth F, Eickhoff SB (2010) Dissociating bottom-up and top-down processes in a manual stimulus–response compatibility task. J Neurophysiol 104:1472–1483PubMedCentralPubMedGoogle Scholar
  17. Cieslik EC, Zilles K, Grefkes C, Eickhoff SB (2011) Dynamic interactions in the fronto-parietal network during a manual stimulus–response compatibility task. Neuroimage 58:860–869. doi: 10.1016/j.neuroimage.2011.05.089 PubMedGoogle Scholar
  18. Cieslik EC, Müller VI, Kellermann TS, Grefkes C, Halfter S, Eickhoff SB (2013a) Shifted neuronal balance during stimulus–response integration in schizophrenia: an fMRI study. Brain Struct Funct [Advance online publication]. doi: 10.1007/s00429-013-0652-1
  19. Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, Langner R, Laird AR, Fox PT, Eickhoff SB (2013b) Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex 23:2677–2689. doi: 10.1093/cercor/bhs256 PubMedCentralPubMedGoogle Scholar
  20. Cisek P (2006) Integrated neural processes for defining potential actions and deciding between them: a computational model. J Neurosci 26:9761–9770. doi: 10.1523/JNEUROSCI.5605-05.2006 PubMedGoogle Scholar
  21. Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013) Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83:174–188. doi: 10.1016/j.neuroimage.2013.06.041 PubMedGoogle Scholar
  22. Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37:343–360. doi: 10.1016/j.neuroimage.2007.03.071 PubMedGoogle Scholar
  23. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. doi: 10.1038/nrn755 PubMedGoogle Scholar
  24. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324. doi: 10.1016/j.neuron.2008.04.017 PubMedCentralPubMedGoogle Scholar
  25. Craik FIM, Salthouse TA (2008) The handbook of aging and cognition. Psychology Press, New YorkGoogle Scholar
  26. Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA (2008) Effects of rTMS on grip force control following subcortical stroke. Exp Neurol 211:407–412. doi: 10.1016/j.expneurol.2008.02.018 PubMedGoogle Scholar
  27. Defer GL, Widner H, Marie RM, Remy P, Levivier M (1999) Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 14:572–584PubMedGoogle Scholar
  28. Dennis NA, Cabeza R (2008) Neuroimaging of healthy cognitive aging. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition. Lawrence Erlbaum, London, pp 1–54Google Scholar
  29. Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812. doi: 10.1016/j.neuron.2006.04.031 PubMedCentralPubMedGoogle Scholar
  30. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078. doi: 10.1073/pnas.0704320104 PubMedCentralPubMedGoogle Scholar
  31. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011a) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57:938–949PubMedCentralPubMedGoogle Scholar
  32. Eickhoff SB, Pomjanski W, Jakobs O, Zilles K, Langner R (2011b) Neural correlates of developing and adapting behavioural biases in speeded choice reactions: an fMRI study on predictive motor coding. Cereb Cortex 21:1178–1191. doi: 10.1093/cercor/bhq188 PubMedGoogle Scholar
  33. Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 37:384–400. doi: 10.1016/j.neubiorev.2013.01.017 PubMedGoogle Scholar
  34. Fitts PM, Deininger RL (1954) S-R compatibility: correspondence among paired elements within stimulus and response codes. J Exp Psychol 48:483–492. doi: 10.1037/H0054967 PubMedGoogle Scholar
  35. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi: 10.1038/nrn2201 PubMedGoogle Scholar
  36. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25:185–198PubMedGoogle Scholar
  37. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051. doi: 10.1073/pnas.0604187103 PubMedCentralPubMedGoogle Scholar
  38. Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56:171–184. doi: 10.1016/j.neuron.2007.08.023 PubMedGoogle Scholar
  39. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. doi: 10.1152/jn.90777.2008 PubMedCentralPubMedGoogle Scholar
  40. Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1–89Google Scholar
  41. Goh JO (2011) Functional dedifferentiation and altered connectivity in older adults: neural accounts of cognitive aging. Aging Dis 2:30–48PubMedCentralPubMedGoogle Scholar
  42. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36. doi: 10.1006/nimg.2001.0786 PubMedGoogle Scholar
  43. Grady CL (2005) Functional connectivity during memory tasks in healthy aging and dementia. In: Cabeza R, Nyberg L, Park DC (eds) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press, Oxford, pp 286–308Google Scholar
  44. Grady CL (2008) Cognitive neuroscience of aging. Ann N Y Acad Sci 1124:127–144. doi: 10.1196/annals.1440.009 PubMedGoogle Scholar
  45. Grandjean J, Collette F (2011) Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: a comparison of young and elderly participants. Brain Cogn 77:237–247. doi: 10.1016/j.bandc.2011.08.004 PubMedGoogle Scholar
  46. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258. doi: 10.1073/pnas.0135058100 PubMedCentralPubMedGoogle Scholar
  47. Hoffstaedter F, Grefkes C, Roski C, Caspers S, Zilles K, Eickhoff SB (2014) Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct [Advance online publication]. doi: 10.1007/s00429-013-0696-2
  48. Hommel B, Prinz W (1997) Theoretical issues in stimulus–response compatibility. North-Holland, AmsterdamGoogle Scholar
  49. Hoshi E, Tanji J (2006) Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J Neurophysiol 95:3596–3616. doi: 10.1152/jn.01126.2005 PubMedGoogle Scholar
  50. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60:2389–2398. doi: 10.1016/j.neuroimage.2012.02.037 PubMedCentralPubMedGoogle Scholar
  51. Kessler J, Fast K, Mielke R (1995) Zur Problematik der prämorbiden Intelligenzdiagnostik mit dem MWT-B bei Patienten mit Alzheimer-Erkrankung [Premorbid intelligence diagnosis with the MWT-B (Multiple-Choice Word Test-B) in patients with Alzheimer’s disease]. Nervenarzt 66:696–702PubMedGoogle Scholar
  52. Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching—a review. Psychol Bull 136:849–874. doi: 10.1037/a0019842 PubMedGoogle Scholar
  53. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534PubMedGoogle Scholar
  54. Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009) ALE meta-analysis workflows via the Brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23. doi: 10.3389/neuro.11.023.2009 PubMedCentralPubMedGoogle Scholar
  55. Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139:870–900. doi: 10.1037/a0030694 PubMedCentralPubMedGoogle Scholar
  56. Langner R, Eickhoff SB, Steinborn MB (2011a) Mental fatigue modulates dynamic adaptation to perceptual demand in speeded detection. PLoS One 6:e28399. doi: 10.1371/journal.pone.0028399 PubMedCentralPubMedGoogle Scholar
  57. Langner R, Kellermann T, Boers F, Sturm W, Willmes K, Eickhoff SB (2011b) Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cereb Cortex 21:2850–2862. doi: 10.1093/cercor/bhr083 PubMedGoogle Scholar
  58. Langner R, Kellermann T, Eickhoff SB, Boers F, Chatterjee A, Willmes K, Sturm W (2012) Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile, and visual stimulus detection. Hum Brain Mapp 33:398–418. doi: 10.1002/hbm.21220 PubMedGoogle Scholar
  59. Langner R, Sternkopf MA, Kellermann TS, Grefkes C, Kurth F, Schneider F, Zilles K, Eickhoff SB (2013) Translating working memory into action: Behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences. Hum Brain Mapp [Advance online publication]. doi: 10.1002/hbm.22415
  60. Lee TM, Zhang JX, Chan CC, Yuen KS, Chu LW, Cheung RT, Chan YS, Fox PT, Gao JH (2006) Age-related differences in response regulation as revealed by functional MRI. Brain Res 1076:171–176. doi: 10.1016/j.brainres.2005.12.124 PubMedGoogle Scholar
  61. Lehrl S (2005) Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B) [Multiple-Choice Vocabulary Test-B], 5th edn. Spitta, BalingenGoogle Scholar
  62. Logan GD (2007) What it costs to implement a plan: plan-level and task-level contributions to switch costs. Mem Cognit 35:591–602PubMedGoogle Scholar
  63. Los SA (1996) On the origin of mixing costs: exploring information processing in pure and mixed blocks of trials. Acta Psychol 94:145–188Google Scholar
  64. Madden DJ, Costello MC, Dennis NA, Davis SW, Shepler AM, Spaniol J, Bucur B, Cabeza R (2010) Adult age differences in functional connectivity during executive control. Neuroimage 52:643–657. doi: 10.1016/j.neuroimage.2010.04.249 PubMedCentralPubMedGoogle Scholar
  65. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395PubMedCentralPubMedGoogle Scholar
  66. Matsumoto E, Misaki M, Miyauchi S (2004) Neural mechanisms of spatial stimulus–response compatibility: the effect of crossed-hand position. Exp Brain Res 158:9–17. doi: 10.1007/s00221-004-1872-7 PubMedGoogle Scholar
  67. Mayr U, Liebscher T (2001) Is there an age deficit in the selection of mental sets? Eur J Cognit Psychol 13:47–69Google Scholar
  68. Müller VI, Habel U, Derntl B, Schneider F, Zilles K, Turetsky BI, Eickhoff SB (2011) Incongruence effects in crossmodal emotional integration. Neuroimage 54:2257–2266. doi: 10.1016/j.neuroimage.2010.10.047 PubMedGoogle Scholar
  69. Müller VI, Cieslik EC, Turetsky BI, Eickhoff SB (2012) Crossmodal interactions in audiovisual emotion processing. Neuroimage 60:553–561. doi: 10.1016/j.neuroimage.2011.12.007 PubMedGoogle Scholar
  70. Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24:2186–2198PubMedGoogle Scholar
  71. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196. doi: 10.1146/annurev.psych.59.103006.093656 PubMedCentralPubMedGoogle Scholar
  72. Park DC, Schwarz N (2000) Cognitive aging: a primer. Psychology Press, PhiladelphiaGoogle Scholar
  73. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi: 10.1146/ PubMedGoogle Scholar
  74. Proctor RW, Vu KP, Pick DF (2005) Aging and response selection in spatial choice tasks. Hum Factors 47:250–270PubMedGoogle Scholar
  75. Reitan RM (1955) The relation of the trail making test to organic brain damage. J Consult Psychol 19:393–394PubMedGoogle Scholar
  76. Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17:177–182. doi: 10.1111/j.1467-8721.2008.00570.x Google Scholar
  77. Roski C, Caspers S, Langner R, Laird AR, Fox PT, Zilles K, Amunts K, Eickhoff SB (2013a) Adult age-dependent differences in resting-state connectivity within and between visual-attention and sensorimotor networks. Front Aging Neurosci 5:67. doi: 10.3389/fnagi.2013.00067 PubMedCentralPubMedGoogle Scholar
  78. Roski C, Caspers S, Lux S, Hoffstaedter F, Bergs R, Amunts K, Eickhoff SB (2013b) Activation shift in elderly subjects across functional systems: an fMRI study. Brain Struct Funct [Advance online publication]. doi: 10.1007/s00429-013-0530-x
  79. Rottschy C, Caspers S, Roski C, Reetz K, Dogan I, Schulz JB, Zilles K, Laird AR, Fox PT, Eickhoff SB (2013) Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Struct Funct 218:1551–1567. doi: 10.1007/s00429-012-0476-4 PubMedCentralPubMedGoogle Scholar
  80. Salthouse TA (1991) Theoretical perspectives on cognitive aging. Erlbaum, HillsdaleGoogle Scholar
  81. Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428PubMedGoogle Scholar
  82. Salthouse TA (2011) Neuroanatomical substrates of age-related cognitive decline. Psychol Bull 137:753–784. doi: 10.1037/a0023262 PubMedCentralPubMedGoogle Scholar
  83. Sánchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-Sánchez JM, Rios-Lago M, Tirapu J, Barcelo F (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–450. doi: 10.1017/S1355617709090626 PubMedGoogle Scholar
  84. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi: 10.1016/j.neuroimage.2012.08.052 PubMedGoogle Scholar
  85. Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867PubMedGoogle Scholar
  86. Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS One 7:e30920PubMedCentralPubMedGoogle Scholar
  87. Schulte T, Müller-Oehring EM, Chanraud S, Rosenbloom MJ, Pfefferbaum A, Sullivan EV (2011) Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiol Aging 32:2075–2090. doi: 10.1016/j.neurobiolaging.2009.12.002 PubMedCentralPubMedGoogle Scholar
  88. Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15:1111–1121. doi: 10.1162/089892903322598085 PubMedGoogle Scholar
  89. Shallice T, Stuss DT, Alexander MP, Picton TW, Derkzen D (2008) The multiple dimensions of sustained attention. Cortex 44:794–805. doi: 10.1016/j.cortex.2007.04.002 PubMedGoogle Scholar
  90. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks. 2. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMedGoogle Scholar
  91. Simon JR, Wolf JD (1963) Choice reaction-time as a function of angular stimulus–response correspondence and age. Ergonomics 6:99–105. doi: 10.1080/00140136308930679 Google Scholar
  92. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045. doi: 10.1073/pnas.0905267106 PubMedCentralPubMedGoogle Scholar
  93. Smulders FT, Kenemans JL, Schmidt WF, Kok A (1999) Effects of task complexity in young and old adults: reaction time and P300 latency are not always dissociated. Psychophysiology 36:118–125PubMedGoogle Scholar
  94. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi: 10.1038/nn1008 PubMedGoogle Scholar
  95. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574. doi: 10.1073/pnas.0800005105 PubMedCentralPubMedGoogle Scholar
  96. Steinborn MB, Langner R (2011) Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychol (Amst) 136:405–418. doi: 10.1016/j.actpsy.2011.01.008 Google Scholar
  97. Steinborn MB, Langner R (2012) Arousal modulates temporal preparation under increased time uncertainty: evidence from higher-order sequential foreperiod effects. Acta Psychol (Amst) 139:65–76. doi: 10.1016/j.actpsy.2011.10.010 Google Scholar
  98. Stevens MC (2009) The developmental cognitive neuroscience of functional connectivity. Brain Cogn 70:1–12. doi: 10.1016/j.bandc.2008.12.009 PubMedGoogle Scholar
  99. Stuss DT, Shallice T, Alexander MP, Picton TW (1995) A multidisciplinary approach to anterior attentional functions. Ann N Y Acad Sci 769:191–211PubMedGoogle Scholar
  100. Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370PubMedGoogle Scholar
  101. Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745. doi: 10.1002/hbm.20705 PubMedGoogle Scholar
  102. Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18:2553–2559. doi: 10.1093/cercor/bhn014 PubMedCentralPubMedGoogle Scholar
  103. Turner GR, Spreng RN (2012) Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol Aging 33:826 e1–826 e13. doi: 10.1016/j.neurobiolaging.2011.06.005 Google Scholar
  104. Verhaeghen P (2011) Aging and executive control: reports of a demise greatly exaggerated. Curr Dir Psychol Sci 20:174–180. doi: 10.1177/0963721411408772 PubMedCentralGoogle Scholar
  105. Verhaeghen P, Steitz DW, Sliwinski MJ, Cerella J (2003) Aging and dual-task performance: a meta-analysis. Psychol Aging 18:443–460. doi: 10.1037/0882-7974.18.3.443 PubMedGoogle Scholar
  106. Vu KP, Proctor RW (2008) Age differences in response selection for pure and mixed stimulus–response mappings and tasks. Acta Psychol 129:49–60. doi: 10.1016/j.actpsy.2008.04.006 Google Scholar
  107. Wasylyshyn C, Verhaeghen P, Sliwinski MJ (2011) Aging and task switching: a meta-analysis. Psychol Aging 26:15–20. doi: 10.1037/a0020912 PubMedCentralPubMedGoogle Scholar
  108. Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345PubMedGoogle Scholar
  109. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416. doi: 10.1016/j.neuroimage.2009.05.005 PubMedGoogle Scholar
  110. Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978PubMedGoogle Scholar
  111. Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Li K, Chan P (2007) Aging influence on functional connectivity of the motor network in the resting state. Neurosci Lett 422:164–168. doi: 10.1016/j.neulet.2007.06.011 PubMedGoogle Scholar
  112. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28. doi: 10.1038/nrneurol.2009.198 PubMedGoogle Scholar
  113. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043. doi: 10.1523/JNEUROSCI.2612-10.2010 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Robert Langner
    • 1
    • 2
    Email author
  • Edna C. Cieslik
    • 1
    • 2
  • Simone D. Behrwind
    • 2
  • Christian Roski
    • 2
  • Svenja Caspers
    • 2
  • Katrin Amunts
    • 2
    • 3
  • Simon B. Eickhoff
    • 1
    • 2
  1. 1.Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Institute of Neuroscience and Medicine (INM-1), Research Centre JülichJülichGermany
  3. 3.C. & O. Vogt Institute for Brain ResearchHeinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations