Brain Structure and Function

, Volume 220, Issue 3, pp 1665–1680 | Cite as

Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain

  • Juan C. Fernández-Miranda
  • Yibao Wang
  • Sudhir Pathak
  • Lucia Stefaneau
  • Timothy Verstynen
  • Fang-Cheng Yeh
Original Article

Abstract

The structure and function of the arcuate fascicle is still controversial. The goal of this study was to investigate the asymmetry, connectivity, and segmentation patterns of the arcuate fascicle. We employed diffusion spectrum imaging reconstructed by generalized q-sampling and we applied both a subject-specific approach (10 subjects) and a template approach (q-space diffeomorphic reconstruction of 30 subjects). We complemented our imaging investigation with fiber microdissection of five post-mortem human brains. Our results confirmed the highly leftward asymmetry of the arcuate fascicle. In the template, the left arcuate had a volume twice as large as the right one, and the left superior temporal gyrus provided five times more volume of fibers than its counterpart. We identified four cortical frontal areas of termination: pars opercularis, pars triangularis, ventral precentral gyrus, and caudal middle frontal gyrus. We found clear asymmetry of the frontal terminations at pars opercularis and ventral precentral gyrus. The analysis of patterns of connectivity revealed the existence of a strong structural segmentation in the left arcuate, but not in the right one. The left arcuate fascicle is formed by an inner or ventral pathway, which interconnects pars opercularis with superior and rostral middle temporal gyri; and an outer or dorsal pathway, which interconnects ventral precentral and caudal middle frontal gyri with caudal middle and inferior temporal gyri. The fiber microdissection results provided further support to our tractography studies. We propose the existence of primary and supplementary language pathways within the dominant arcuate fascicle with potentially distinct functional and lesional features.

Keywords

Arcuate fascicle Diffusion spectrum imaging Tractography Language Fiber dissection 

Abbreviations

AAL

Automated anatomical labeling

AF

Arcuate fascicle

BA

Brodmann area

CORID

Committee for oversight research involving dead

DSI

Diffusion spectrum imaging

DTI

Diffusion tensor imaging

EPI

Echo planar imaging

fMRI

Functional MRI

FoV

Field of view

GQI

Generalized q-sampling imaging

ITG

Inferior temporal gyrus

MdLF

Middle longitudinal fascicle

MTG

Middle temporal gyrus

ODF

Orientation distribution function

QA

Quantitative anisotropy

ROI

Region of interest

SLF

Superior longitudinal fascicle

STG

Superior temporal gyrus

TR

Repetition time

Notes

Acknowledgments

The first author would like to acknowledge Maria Jose, Blanca, Martin, Sol, and Alonso for their continuous support to complete this project. The Copeland Fund of The Pittsburgh Foundation.

References

  1. Agrawal A, Kapfhammer JP, Kress A, Wichers H, Deep A, Feindel W et al (2011) Josef Klingler’s models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery 69:238–252CrossRefPubMedGoogle Scholar
  2. Amunts K, Schleicher A, Zilles K (2004) Outstanding language competence and cytoarchitecture in Broca’s speech region. Brain Lang 89:346–353CrossRefPubMedGoogle Scholar
  3. Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825CrossRefPubMedGoogle Scholar
  4. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632CrossRefPubMedGoogle Scholar
  5. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16CrossRefPubMedGoogle Scholar
  6. Catani M, Allin MP, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chi JG, Dooling EC, Gilles FH (1977) Left-right asymmetries of the temporal speech areas of the human fetus. Arch Neurol 34:346–348CrossRefPubMedGoogle Scholar
  8. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMedGoogle Scholar
  9. Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550CrossRefPubMedGoogle Scholar
  10. Fernandez-Miranda JC (2013) Beyond diffusion tensor imaging. J Neurosurg 118:1363–1366CrossRefPubMedGoogle Scholar
  11. Fernandez-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarez-Linera J (2008a) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108:764–774CrossRefPubMedGoogle Scholar
  12. Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP (2008b) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026CrossRefPubMedGoogle Scholar
  13. Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71:430–453CrossRefPubMedGoogle Scholar
  14. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327CrossRefPubMedCentralPubMedGoogle Scholar
  15. Friederici AD (2006) The neural basis of language development and its impairment. Neuron 52:941–952CrossRefPubMedGoogle Scholar
  16. Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181CrossRefPubMedGoogle Scholar
  17. Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetries in the brain. Science 199:852–856CrossRefPubMedGoogle Scholar
  18. Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482CrossRefPubMedGoogle Scholar
  19. Greenberg AS, Verstynen T, Chiu YC, Yantis S, Schneider W, Behrmann MJ (2012) Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 32:2773–2782CrossRefPubMedCentralPubMedGoogle Scholar
  20. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223CrossRefPubMedGoogle Scholar
  21. Hickok G (2012) The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. J Commun Disord 45:393–402CrossRefPubMedCentralPubMedGoogle Scholar
  22. Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99CrossRefPubMedGoogle Scholar
  23. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402CrossRefPubMedGoogle Scholar
  24. Jarbo K, Verstynen T, Schneider W (2012) In vivo quantification of global connectivity in the human corpus callosum. Neuroimage 59:1988–1996CrossRefPubMedGoogle Scholar
  25. Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1:169–183CrossRefPubMedCentralPubMedGoogle Scholar
  26. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMedGoogle Scholar
  27. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254CrossRefPubMedGoogle Scholar
  28. Ludwig E, Klingler J (1965) Atlas cerebri humani. The inner structure of the brain demonstrated on the basis of macroscopical preparations. Little Brown, BostonGoogle Scholar
  29. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869CrossRefPubMedGoogle Scholar
  30. Martino J, da Silva-Feritas R, Caballero H, Marco de Lucas E, García-Porrero JA, Vázquez-Barquero A (2013a) Fiber dissection and DTI tractography study of the temporo-parietal fiber intersection area. Neurosurgery 72(Suppl Operative):87–97PubMedGoogle Scholar
  31. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121CrossRefPubMedGoogle Scholar
  32. Nucifora PG, Verma R, Melhem ER, Gur RE, Gur RC (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. NeuroReport 16:791–794CrossRefPubMedGoogle Scholar
  33. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA et al (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 32:388–399CrossRefPubMedGoogle Scholar
  34. Riecker A, Wildgruber D, Dogil G, Grodd W, Ackermann H (2012) Hemispheric lateralization effects of rhythm implementation during syllable repetitions: an fMRI study. Neuroimage 16:169–176CrossRefGoogle Scholar
  35. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428CrossRefPubMedGoogle Scholar
  36. Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11PubMedCentralPubMedGoogle Scholar
  37. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040CrossRefPubMedCentralPubMedGoogle Scholar
  38. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  39. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653CrossRefPubMedGoogle Scholar
  40. Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96CrossRefPubMedGoogle Scholar
  41. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426CrossRefPubMedGoogle Scholar
  42. Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256CrossRefPubMedGoogle Scholar
  43. Vernooij MW, Smits M, Wielopolski PA, Houston GC, Krestin GP, van der Lugt A (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. Neuroimage 35:1064–1076CrossRefPubMedGoogle Scholar
  44. Verstynen T, Jarbo K, Pathak S, Schneider W (2011) In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 105:336–346CrossRefPubMedGoogle Scholar
  45. Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356CrossRefPubMedGoogle Scholar
  46. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41:1267–1277CrossRefPubMedGoogle Scholar
  47. Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost: and what its recovery might mean. Brain Lang 118:29–39CrossRefPubMedGoogle Scholar
  48. Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58:91–99CrossRefPubMedGoogle Scholar
  49. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635CrossRefPubMedGoogle Scholar
  50. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8(11):e80713. doi: 10.1371/journal.pone.0080713 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan C. Fernández-Miranda
    • 1
  • Yibao Wang
    • 1
  • Sudhir Pathak
    • 2
  • Lucia Stefaneau
    • 1
  • Timothy Verstynen
    • 3
  • Fang-Cheng Yeh
    • 3
  1. 1.Department of Neurological SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Learning Research and Development CenterUniversity of PittsburghPittsburghUSA
  3. 3.Department of BioengineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations