Brain Structure and Function

, Volume 220, Issue 3, pp 1463–1475 | Cite as

Impacts of PICALM and CLU variants associated with Alzheimer’s disease on the functional connectivity of the hippocampus in healthy young adults

  • Peng Zhang
  • Wen Qin
  • Dawei Wang
  • Bing Liu
  • Yunting Zhang
  • Tianzi Jiang
  • Chunshui Yu
Original Article


PICALM rs3851179 and CLU rs11136000 have been recently associated with Alzheimer’s disease (AD). Investigating the effects of these genetic variants on the resting-state functional connectivity (rsFC) of the hippocampus may provide new insight into AD pathogenesis. We investigated the main effects and interactions of these two genetic variants on hippocampal rsFC in 283 healthy young adults. The hippocampus showed positive rsFC with the default mode network and negative rsFC with the fronto-parietal network. Risk PICALM G-allele carriers showed weaker negative rsFC compared with AA carriers, whereas risk CLU-CC carriers exhibited stronger positive and negative rsFC than T-allele carriers. There existed complex interactions between PICALM and CLU on the negative rsFC of the hippocampus. Moreover, we found an allele-dependent effect of CLU on hippocampal connectivity when an additive genetic model was applied to CLU. Most of these effects remained significant even after controlling for individual ApoE status. Our results suggest that PICALM and CLU risk genotypes exert differential impacts on the hippocampal rsFC in healthy young subjects. The complex interactions between PICALM and CLU should be considered when investigating the impact of these two genetic variants on the brain.


PICALM CLU Hippocampus Functional connectivity FMRI SNP 



This work was supported by the Natural Science Foundation of China (No. 81271551), National Basic Research Program of China (973 program, No. 2011CB707801), and the International Cooperation and Exchanges NSFC (No. 81061120533).

Supplementary material

429_2014_738_MOESM1_ESM.doc (19.2 mb)
Supplementary material 1 (DOC 19627 kb)


  1. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33(8):1564–1578CrossRefPubMedGoogle Scholar
  2. Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79:221–228CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851CrossRefPubMedGoogle Scholar
  4. Barral S, Bird T, Goate A, Farlow MR, Diaz-Arrastia R, Bennett DA, Graff-Radford N, Boeve BF, Sweet RA, Stern Y, Wilson RS, Foroud T, Ott J, Mayeux R (2012) Genotype patterns at PICALM, CR1, BIN1, CLU, and APOE genes are associated with episodic memory. Neurology 78(19):1464–1471. doi: 10.1212/WNL.0b013e3182553c48 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bartrés-Faz D, Serra-Grabulosa JM, Sun FT, Solé-Padullés C, Rami L, Molinuevo JL, Bosch B, Mercader JM, Bargalló N, Falcón C, Vendrell P, Junqué C, D’Esposito M (2008) Functional connectivity of the hippocampus in elderly with mild memory dysfunction carrying the APOE ɛ4 allele. Neurobiol Aging 29(11):1644–1653CrossRefPubMedGoogle Scholar
  6. Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat D, Rosand J (2010) Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 67(6):677–685CrossRefPubMedCentralPubMedGoogle Scholar
  7. Boggs LN, Fuson KS, Baez M, Churgay L, McClure D, Becker G, May PC (1996) Clusterin (Apo J) protects against in vitro amyloid-beta (1-40) neurotoxicity. J Neurochem 67(3):1324–1327CrossRefPubMedGoogle Scholar
  8. Bralten J, Franke B, Arias-Vasquez A, Heister A, Brunner HG, Fernandez G, Rijpkema M (2011) CR1 genotype is associated with entorhinal cortex volume in young healthy adults. Neurobiol Aging 32 (11):2106 e2107–2111Google Scholar
  9. Braskie MN, Jahanshad N, Stein JL, Barysheva M, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Ringman JM, Toga AW, Thompson PM (2011) Common alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. J Neurosci 31(18):6764–6770CrossRefPubMedCentralPubMedGoogle Scholar
  10. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG (2010) Replication of CLU, CR1, and PICALM associations with alzheimer disease. Arch Neurol 67(8):961–964CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13PubMedCentralPubMedGoogle Scholar
  12. Chen LH, Kao PYP, Fan YH, Ho DTY, Chan CSY, Yik PY, Ha JCT, Chu LW, Song Y-Q (2012) Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer’s disease in a southern Chinese population. Neurobiol Aging 33(1):210.e211–210.e217CrossRefGoogle Scholar
  13. Cirrito JR, Kang J-E, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58(1):42–51CrossRefPubMedCentralPubMedGoogle Scholar
  14. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. Kluwer Academic Publishers, DordrechtGoogle Scholar
  15. Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O’Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19(16):3295–3301CrossRefPubMedCentralPubMedGoogle Scholar
  16. Daselaar SM, Prince SE, Cabeza R (2004) When less means more: deactivations during encoding that predict subsequent memory. NeuroImage 23(3):921–927CrossRefPubMedGoogle Scholar
  17. de Leon MJ, Convit A, DeSanti S, Golomb J, Tarshish C, Rusinek H, Bobinski M, Ince C, Miller DC, Wisniewski HM et al (1995) The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am 5(1):1–17PubMedGoogle Scholar
  18. DeMattos RB, O’Dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR, Paul SM, Aronow BJ, Holtzman DM (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 99(16):10843–10848CrossRefPubMedCentralPubMedGoogle Scholar
  19. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JA, Aronow BJ, Bales KR, Paul SM, Holtzman DM (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41(2):193–202CrossRefPubMedGoogle Scholar
  20. Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105CrossRefPubMedCentralPubMedGoogle Scholar
  21. Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118(5):591–605CrossRefPubMedGoogle Scholar
  22. Erk S, Meyer-Lindenberg A, Opitz von Boberfeld C, Esslinger C, Schnell K, Kirsch P, Mattheisen M, Muhleisen TW, Cichon S, Witt SH, Rietschel M, Nothen MM, Walter H (2011) Hippocampal function in healthy carriers of the CLU Alzheimer’s disease risk variant. J Neurosci 31(49):18180–18184CrossRefPubMedGoogle Scholar
  23. Fennema-Notestine C, Hagler DJ Jr, McEvoy LK, Fleisher AS, Wu EH, Karow DS, Dale AM (2009) Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum Brain Mapp 30(10):3238–3253CrossRefPubMedCentralPubMedGoogle Scholar
  24. Ferrari R, Moreno JH, Minhajuddin AT, O’Bryant SE, Reisch JS, Barber RC, Momeni P (2012) implication of common and disease specific variants in CLU, CR1 and PICALM. Neurobiol Aging 33:1846.e1847–1846.e1848Google Scholar
  25. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-4 allele. Proc Natl Acad Sci 106(17):7209–7214CrossRefPubMedCentralPubMedGoogle Scholar
  26. Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P, Hodges A, Powell J, Wahlund LO, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Spenger C, Lathrop M, Shen L, Kim S, Saykin AJ, Weiner MW, Lovestone S (2010) Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry 16(11):1130–1138CrossRefPubMedGoogle Scholar
  27. Gao W, Lin W (2012) Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum Brain Mapp 33(1):192–202CrossRefPubMedCentralPubMedGoogle Scholar
  28. Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, Curran JC, Olvera RL, Laird AR, Smith SM, Beckmann CF, Fox PT, Blangero J (2010) Genetic control over the resting brain. Proc Natl Acad Sci USA 107(3):1223–1228CrossRefPubMedCentralPubMedGoogle Scholar
  29. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642CrossRefPubMedCentralPubMedGoogle Scholar
  30. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel K-H, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093CrossRefPubMedCentralPubMedGoogle Scholar
  31. Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ, Buxbaum JD, Ertekin-Taner N, Fallin MD, Friedland R, Inzelberg R, Kramer P, Rogaeva E, St George-Hyslop P, Cantwell LB, Dombroski BA, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Lunetta KL, Martin ER, Montine TJ, Goate AM, Blacker D, Tsuang DW, Beekly D, Cupples LA, Hakonarson H, Kukull W, Foroud TM, Haines J, Mayeux R, Farrer LA, Pericak-Vance MA, Schellenberg GD (2010) Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67(12):1473–1484CrossRefPubMedCentralPubMedGoogle Scholar
  32. Kamboh MI, Minster RL, Demirci FY, Ganguli M, DeKosky ST, Lopez OL, Barmada MM (2012) Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging 33(3):518–521CrossRefPubMedCentralPubMedGoogle Scholar
  33. Kohannim O, Jahanshad N, Braskie MN, Stein JL, Chiang MC, Reese AH, Hibar DP, Toga AW, McMahon KL, de Zubicaray GI, Medland SE, Montgomery GW, Martin NG, Wright MJ, Thompson PM (2012) Predicting white matter integrity from multiple common genetic variants. Neuropsychopharmacology 37(9):2012–2019CrossRefPubMedCentralPubMedGoogle Scholar
  34. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues J-F, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099CrossRefPubMedGoogle Scholar
  35. Lambert J-C, Zelenika D, Hiltunen M, Chouraki V, Combarros O, Bullido MJ, Tognoni G, Fiévet N, Boland A, Arosio B, Coto E, Zompo MD, Mateo I, Frank-Garcia A, Helisalmi S, Porcellini E, Pilotto A, Forti P, Ferri R, Delepine M, Scarpini E, Siciliano G, Solfrizzi V, Sorbi S, Spalletta G, Ravaglia G, Valdivieso F, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Licastro F, Lathrop M, Soininen H, Amouyel P (2011) Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiol Aging 32(4):756.e711–756.e715CrossRefGoogle Scholar
  36. Lancaster TM, Baird A, Wolf C, Jackson MC, Johnston SJ, Donev R, Thome J, Linden DEJ (2011) Neural hyperactivation in carriers of the Alzheimer’s risk variant on the clusterin gene. Eur Neuropsychopharmacol 21(12):880–884CrossRefPubMedGoogle Scholar
  37. Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, Jiménez-Velazquez IZ (2011) Identification of Novel Loci for Alzheimer Disease and replication of CLU, PICALM, and BIN1 in caribbean hispanic individuals. Arch Neurol 68(3):320–328CrossRefPubMedCentralPubMedGoogle Scholar
  38. Li R, Wu X, Fleisher AS, Reiman EM, Chen K, Yao L (2012) Attention-related networks in Alzheimer’s disease: a resting functional MRI study. Hum Brain Mapp 33(5):1076–1088CrossRefPubMedCentralPubMedGoogle Scholar
  39. Lidström A-M, Bogdanovic N, Hesse C, Volkman I, Davidsson P, Blennow K (1998) Clusterin (Apolipoprotein J) protein levels are increased in hippocampus and in frontal cortex in Alzheimer’s disease. Exp Neurol 154:511–521CrossRefPubMedGoogle Scholar
  40. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage 7(2):119–132CrossRefPubMedGoogle Scholar
  41. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533CrossRefPubMedGoogle Scholar
  42. Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, Lunetta KL, Baldwin CT, Saykin AJ, Farrer LA (2012) Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol 72(1):65–75CrossRefPubMedCentralPubMedGoogle Scholar
  43. Mengel-From J, Christensen K, McGue M, Christiansen L (2011) Genetic variations in the CLU and PICALM genes are associated with cognitive function in the oldest old. Neurobiology of Aging 32(3):554.e511–554.e557CrossRefGoogle Scholar
  44. Metzak PD, Riley JD, Wang L, Whitman JC, Ngan ETC, Woodward TS (2011) Decreased efficiency of task-positive and task-negative networks during working memory in schizophrenia. Schizophr Bull 38(4):803–813CrossRefPubMedCentralPubMedGoogle Scholar
  45. Miller SL, Celone K, DePeau K, Diamond E, Dickerson BC, Rentz D, Pihlajamaki M, Sperling RA (2008) Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci USA 105(6):2181–2186CrossRefPubMedCentralPubMedGoogle Scholar
  46. Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, Jonides J (2013) A meta-analysis of executive components of working memory. Cereb Cortex 23(2):264–282CrossRefPubMedCentralPubMedGoogle Scholar
  47. Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2009) Clusterin: a forgotten player in Alzheimer’s disease. Brain Res Rev 61(2):89–104CrossRefPubMedGoogle Scholar
  48. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC, Sperling RA (2010) Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 74(24):1969–1976CrossRefPubMedCentralPubMedGoogle Scholar
  49. Otten LJ, Rugg MD (2001) When more means less: neural activity related to unsuccessful memory encoding. Curr Biol 11(19):1528–1530CrossRefPubMedGoogle Scholar
  50. Papassotiropoulos A, Stephan DA, Huentelman MJ, Hoerndli FJ, Craig DW, Pearson JV, Huynh KD, Brunner F, Corneveaux J, Osborne D, Wollmer MA, Aerni A, Coluccia D, Hanggi J, Mondadori CR, Buchmann A, Reiman EM, Caselli RJ, Henke K, de Quervain DJ (2006) Common Kibra alleles are associated with human memory performance. Science 314(5798):475–478CrossRefPubMedGoogle Scholar
  51. Poirier J, Delisle MC, Quirion R, Aubert I, Farlow M, Lahiri D, Hui S, Bertrand P, Nalbantoglu J, Gilfix BM, Gauthier S (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 92(26):12260–12264CrossRefPubMedCentralPubMedGoogle Scholar
  52. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012a) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154CrossRefPubMedCentralPubMedGoogle Scholar
  53. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012b) Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImageGoogle Scholar
  54. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in CGoogle Scholar
  55. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedCentralPubMedGoogle Scholar
  56. Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R (2011) Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol (Camb) 3(8):803–815CrossRefGoogle Scholar
  57. Schwindt GC, Chaudhary S, Crane D, Ganda A, Masellis M, Grady CL, Stefanovic B, Black SE (2012) Modulation of the default-mode network between rest and task in Alzheimer’s disease. Cereb CortexGoogle Scholar
  58. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedCentralPubMedGoogle Scholar
  59. Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104(47):18760–18765CrossRefPubMedCentralPubMedGoogle Scholar
  60. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574CrossRefPubMedCentralPubMedGoogle Scholar
  61. Sweet RA, Seltman H, Emanuel JE, Lopez OL, Becker JT, Bis JC, Weamer EA, DeMichele-Sweet MA, Kuller LH (2012) Effect of Alzheimer’s disease risk genes on trajectories of cognitive function in the Cardiovascular Health Study. Am J Psychiatr 169(9):954–962CrossRefPubMedCentralPubMedGoogle Scholar
  62. Thambisetty M, Beason-Held LL, An Y, Kraut M, Nalls M, Hernandez DG, Singleton AB, Zonderman AB, Ferrucci L, Lovestone S, Resnick SM (2013) Alzheimer risk variant CLU and brain function during aging. Biol Psychiatr 73(5):399–405CrossRefGoogle Scholar
  63. Thomas G, Sinville R, Sutton S, Farquar H, Hammer RP, Soper SA, Cheng YW, Barany F (2004) Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis 25(10–11):1668–1677CrossRefPubMedGoogle Scholar
  64. Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334(6060):1241–1245CrossRefPubMedCentralPubMedGoogle Scholar
  65. van den Heuvel MP, van Soelen IL, Stam CJ, Kahn RS, Boomsma DI, Hulshoff Pol HE (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol 23(1):19–23CrossRefPubMedGoogle Scholar
  66. Wagner AD, Shannon BJ, Kahn I, Buckner RL (2005) Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 9(9):445–453CrossRefPubMedGoogle Scholar
  67. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28(10):967–978CrossRefPubMedGoogle Scholar
  68. Weinberg J, Drubin DG (2012) Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 22(1):1–13CrossRefPubMedCentralPubMedGoogle Scholar
  69. Westlye ET, Lundervold A, Rootwelt H, Lundervold AJ, Westlye LT (2011) Increased Hippocampal Default Mode Synchronization during rest in middle-aged and elderly APOE 4 Carriers: relationships with memory performance. J Neurosci 31(21):7775–7783CrossRefPubMedGoogle Scholar
  70. Wheeler ME, Buckner RL (2003) Functional dissociation among components of remembering: control, perceived oldness, and content. J Neurosci 23(9):3869–3880PubMedGoogle Scholar
  71. Wu X, Li R, Fleisher AS, Reiman EM, Guan X, Zhang Y, Chen K, Yao L (2011) Altered default mode network connectivity in Alzheimer’s disease-A resting functional MRI and bayesian network study. Hum Brain Mapp 32(11):1868–1881CrossRefPubMedCentralPubMedGoogle Scholar
  72. Xie C, Bai F, Yu H, Shi Y, Yuan Y, Chen G, Li W, Zhang Z, Li SJ (2012) Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment. NeuroImage 63(1):320–327CrossRefPubMedGoogle Scholar
  73. Yi P, Chen Z, Zhao Y, Guo J, Fu H, Zhou Y, Yu L, Li L (2009) PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma. Prenat Diagn 29(3):217–222CrossRefPubMedGoogle Scholar
  74. Zarei M, Beckmann CF, Binnewijzend MAA, Schoonheim MM, Oghabian MA, Sanz-Arigita EJ, Scheltens P, Matthews PM, Barkhof F (2013) Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer’s disease. NeuroImage 66:28–35CrossRefPubMedGoogle Scholar
  75. Zhang HY, Wang SJ, Xing J, Liu B, Ma ZL, Yang M, Zhang ZJ, Teng GJ (2009) Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav Brain Res 197(1):103–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peng Zhang
    • 1
  • Wen Qin
    • 1
  • Dawei Wang
    • 1
  • Bing Liu
    • 2
  • Yunting Zhang
    • 1
  • Tianzi Jiang
    • 2
  • Chunshui Yu
    • 1
  1. 1.Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
  2. 2.Brainnetome Center and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations