Advertisement

Brain Structure and Function

, Volume 220, Issue 3, pp 1449–1462 | Cite as

Implications of p75NTR for dentate gyrus morphology and hippocampus-related behavior revisited

  • M. Dokter
  • R. Busch
  • R. Poser
  • M. A. Vogt
  • V. von Bohlen und Halbach
  • P. Gass
  • K. Unsicker
  • O. von Bohlen und HalbachEmail author
Original Article

Abstract

The pan-neurotrophin receptor p75NTR is expressed in the adult brain in a discrete pattern. Although numerous studies have addressed its implications for hippocampal functions, the generated sets of data are surprisingly conflicting. We have therefore set out to re-investigate the impact of a deletion of the full-length p75NTR receptor on several parameters of the dentate gyrus (DG), including neurogenesis and hippocampus-related behavior by using p75NTRExIII knockout mice. Moreover, we investigated further parameters of the DG (cholinergic innervation, dendritic spines). In addition, we analyzed on the morphological level the impact of aging by comparing adult and aged p75NTRExIII mice and their age-matched littermates. Adult (4–6 months old), but not aged (20 months old), p75NTRExIII knockout mice display an enhanced volume of the DG. However, adult neurogenesis within the adult DG was unaffected in both adult and aged p75NTRExIII knockout mice. We could further demonstrate that the change in the volume of the DG was accompanied by an increased cholinergic innervation and increased spine densities of granule cells in adult, but not aged p75NTR deficient mice. These morphological changes in the adult p75NTR deficient mice were accompanied by specific alterations in their behavior, including altered behavior in the Morris water maze test, indicating impairments in spatial memory retention.

Keywords

Neurotrophin p75NTR Adult neurogenesis Dendritic spine Morris water maze Aging 

Notes

Acknowledgements

We wish to thank Mrs S. Hanisch for excellent technical assistance. This study was supported by grants (BO 1971/5-1; UN 34/25, SFB 636-TP B3) from the German Research Foundation (DFG).

References

  1. Barrett GL, Greferath U, Barker PA, Trieu J, Bennie A (2005) Co-expression of the P75 neurotrophin receptor and neurotrophin receptor-interacting melanoma antigen homolog in the mature rat brain. Neuroscience 133(2):381–392. doi: 10.1016/j.neuroscience.2005.01.067 CrossRefPubMedGoogle Scholar
  2. Barrett GL, Reid CA, Tsafoulis C, Zhu W, Williams DA, Paolini AG, Trieu J, Murphy M (2010) Enhanced spatial memory and hippocampal long-term potentiation in p75 neurotrophin receptor knockout mice. Hippocampus 20(1):145–152. doi: 10.1002/hipo.20598 PubMedGoogle Scholar
  3. Baryshnikova LM, von Bohlen und Halbach O, Kaplan S, von Bartheld CS (2006) Two distinct events, section compression and loss of particles (“lost caps”), contribute to z-axis distortion and bias in optical disector counting. Microsc Res Tech 69(9):738–756. doi: 10.1002/jemt.20345 CrossRefPubMedGoogle Scholar
  4. Bernabeu RO, Longo FM (2010) The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neurosci 11:136. doi: 10.1186/1471-2202-11-136 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Catts VS, Al-Menhali N, Burne TH, Colditz MJ, Coulson EJ (2008) The p75 neurotrophin receptor regulates hippocampal neurogenesis and related behaviours. Eur J Neurosci 28(5):883–892. doi: 10.1111/j.1460-9568.2008.06390.x CrossRefPubMedGoogle Scholar
  6. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. doi: 10.1038/nrn1078 CrossRefPubMedGoogle Scholar
  7. Chapleau CA, Pozzo-Miller L (2012) Divergent roles of p75(NTR) and Trk receptors in BDNF’s effects on dendritic spine density and morphology. Neural Plast 2012:578057. doi: 10.1155/2012/578057 PubMedCentralPubMedGoogle Scholar
  8. Charalampopoulos I, Vicario A, Pediaditakis I, Gravanis A, Simi A, Ibanez CF (2012) Genetic dissection of neurotrophin signaling through the p75 neurotrophin receptor. Cell Rep 2(6):1563–1570. doi: 10.1016/j.celrep.2012.11.009 CrossRefPubMedGoogle Scholar
  9. Chourbaji S, Hellweg R, Brandis D, Zorner B, Zacher C, Lang UE, Henn FA, Hortnagl H, Gass P (2004) Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 121(1–2):28–36. doi: 10.1016/j.molbrainres.2003.11.002 CrossRefPubMedGoogle Scholar
  10. Chourbaji S, Brandwein C, Vogt MA, Dormann C, Hellweg R, Gass P (2008) Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice? Behav Brain Res 192(2):254–258. doi: 10.1016/j.bbr.2008.04.015 CrossRefPubMedGoogle Scholar
  11. Colditz MJ, Catts VS, Al-menhali N, Osborne GW, Bartlett PF, Coulson EJ (2010) p75 Neurotrophin receptor regulates basal and fluoxetine-stimulated hippocampal neurogenesis. Exp Brain Res 200(2):161–167. doi: 10.1007/s00221-009-1947-6 CrossRefPubMedGoogle Scholar
  12. Dokter M, von Bohlen und Halbach O (2012) Neurogenesis within the adult hippocampus under physiological conditions and in depression. Neural Regen Res 7(7):8. doi: 10.3969/j Google Scholar
  13. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT (2013) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 64:65–73. doi: 10.1016/j.neuropharm.2012.06.027 CrossRefPubMedGoogle Scholar
  14. Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331(1):243–250. doi: 10.1007/s00441-007-0478-3 CrossRefPubMedGoogle Scholar
  15. Freund M, Walther T, von Bohlen Und Halbach O (2013) Effects of the angiotensin-(1-7) receptor Mas on cell proliferation and on the population of doublecortin positive cells within the dentate gyrus and the piriform cortex. Eur Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2013.06.004 PubMedGoogle Scholar
  16. Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20(17):6340–6346PubMedGoogle Scholar
  17. Frielingsdorf H, Simpson DR, Thal LJ, Pizzo DP (2007) Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis 26(1):47–55. doi: 10.1016/j.nbd.2006.11.015 CrossRefPubMedGoogle Scholar
  18. Fujii T, Kunugi H (2009) p75NTR as a therapeutic target for neuropsychiatric diseases. Curr Mol Pharmacol 2:70–76CrossRefPubMedGoogle Scholar
  19. Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134(6):1181–1190. doi: 10.1242/dev.02808 CrossRefPubMedGoogle Scholar
  20. Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci USA 107(38):16697–16702. doi: 10.1073/pnas.1008200107 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Giuliani A, D’Intino G, Paradisi M, Giardino L, Calza L (2004) p75(NTR)-immunoreactivity in the subventricular zone of adult male rats: expression by cycling cells. J Mol Histol 35(8–9):749–758. doi: 10.1007/s10735-004-9609-2 CrossRefPubMedGoogle Scholar
  22. Greferath U, Bennie A, Kourakis A, Bartlett PF, Murphy M, Barrett GL (2000) Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. Eur J Neurosci 12(3):885–893CrossRefPubMedGoogle Scholar
  23. Greferath U, Trieu J, Barrett GL (2012) The p75 neurotrophin receptor has nonapoptotic antineurotrophic actions in the basal forebrain. J Neurosci Res 90(1):278–287. doi: 10.1002/jnr.22735 CrossRefPubMedGoogle Scholar
  24. Guo J, Wang J, Zhang Z, Yan J, Chen M, Pang T, Zhang L, Liao H (2013) proNGF inhibits neurogenesis and induces glial activation in adult mouse dentate gyrus. Neurochem Res. doi: 10.1007/s11064-013-1071-7 PubMedCentralGoogle Scholar
  25. Hefti F, Will B (1987) Nerve growth factor is a neurotrophic factor for forebrain cholinergic neurons; implications for Alzheimer’s disease. J Neural Transm Suppl 24:309–315PubMedGoogle Scholar
  26. Kaneko N, Okano H, Sawamoto K (2006) Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 11(10):1145–1159. doi: 10.1111/j.1365-2443.2006.01010.x CrossRefPubMedGoogle Scholar
  27. Karl T, Pabst R, von Horsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55(1):69–83CrossRefPubMedGoogle Scholar
  28. Kempermann G (2011) Seven principles in the regulation of adult neurogenesis. Eur J Neurosci 33(6):1018–1024. doi: 10.1111/j.1460-9568.2011.07599.x CrossRefPubMedGoogle Scholar
  29. Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257(5):271–280. doi: 10.1007/s00406-007-0731-5 CrossRefPubMedGoogle Scholar
  30. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE 5(1):e8809. doi: 10.1371/journal.pone.0008809 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69(5):737–749CrossRefPubMedGoogle Scholar
  32. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294(5548):1945–1948. doi: 10.1126/science.1065057 CrossRefPubMedGoogle Scholar
  33. Martinowich K, Schloesser RJ, Lu Y, Jimenez DV, Paredes D, Greene JS, Greig NH, Manji HK, Lu B (2012) Roles of p75(NTR), long-term depression, and cholinergic transmission in anxiety and acute stress coping. Biol Psychiatry 71(1):75–83. doi: 10.1016/j.biopsych.2011.08.014 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi: 10.1016/j.neuron.2011.05.001 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26(6):939–946. doi: 10.1016/j.neurobiolaging.2004.07.015 CrossRefPubMedGoogle Scholar
  36. Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G, Campagnolo L (2009) p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res 315(18):3220–3232. doi: 10.1016/j.yexcr.2009.08.014 CrossRefPubMedGoogle Scholar
  37. Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26(4):233–242CrossRefPubMedGoogle Scholar
  38. Naumann T, Casademunt E, Hollerbach E, Hofmann J, Dechant G, Frotscher M, Barde YA (2002) Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci 22(7):2409–2418PubMedGoogle Scholar
  39. Peterson DA, Dickinson-Anson HA, Leppert JT, Lee KF, Gage FH (1999) Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. J Comp Neurol 404(1):1–20CrossRefPubMedGoogle Scholar
  40. Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105(2):207–217CrossRefPubMedGoogle Scholar
  41. Rosch H, Schweigreiter R, Bonhoeffer T, Barde YA, Korte M (2005) The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci USA 102(20):7362–7367. doi: 10.1073/pnas.0502460102 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563. doi: 10.1016/j.bbr.2010.11.058 CrossRefPubMedGoogle Scholar
  43. Sotthibundhu A, Li QX, Thangnipon W, Coulson EJ (2009) Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging 30(12):1975–1985. doi: 10.1016/j.neurobiolaging.2008.02.004 CrossRefPubMedGoogle Scholar
  44. Teles-Grilo Ruivo LM, Mellor JR (2013) Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci 5:2. doi: 10.3389/fnsyn.2013.00002 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25(22):5455–5463. doi: 10.1523/jneurosci.5123-04.2005 CrossRefPubMedGoogle Scholar
  46. Troy CM, Friedman JE, Friedman WJ (2002) Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. J Biol Chem 277(37):34295–34302. doi: 10.1074/jbc.M205167200 CrossRefPubMedGoogle Scholar
  47. Van der Zee CE, Ross GM, Riopelle RJ, Hagg T (1996) Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice. Science 274(5293):1729–1732CrossRefPubMedGoogle Scholar
  48. Vigers AJ, Amin DS, Talley-Farnham T, Gorski JA, Xu B, Jones KR (2012) Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212:1–18. doi: 10.1016/j.neuroscience.2012.03.031 CrossRefPubMedGoogle Scholar
  49. Vogt MA, Chourbaji S, Brandwein C, Dormann C, Sprengel R, Gass P (2008) Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping. Exp Neurol 211(1):25–33. doi: 10.1016/j.expneurol.2007.12.012 CrossRefPubMedGoogle Scholar
  50. von Bartheld C (2002) Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases. Histol Histopathol 17(2):639–648Google Scholar
  51. von Bohlen und Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345(1):1–19. doi: 10.1007/s00441-011-1196-4 CrossRefGoogle Scholar
  52. von Bohlen und Halbach O, Unsicker K (2003) Age-related decline in the tyrosine hydroxylase-immunoreactive innervation of the amygdala and dentate gyrus in mice. Cell Tissue Res 311(2):139–143. doi: 10.1007/s00441-002-0662-4 Google Scholar
  53. von Bohlen und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 19(12):1740–1742. doi: 10.1096/fj.05-3845fje Google Scholar
  54. von Bohlen und Halbach O, Krause S, Medina D, Sciarretta C, Minichiello L, Unsicker K (2006a) Regional- and age-dependent reduction in trkB receptor expression in the hippocampus is associated with altered spine morphologies. Biol Psychiatry 59(9):793–800. doi: 10.1016/j.biopsych.2005.08.025
  55. von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006b) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83(4):525–531. doi: 10.1002/jnr.20759 CrossRefGoogle Scholar
  56. von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G (2001) Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4(10):977–978. doi: 10.1038/nn730 CrossRefGoogle Scholar
  57. Waltereit R, Leimer U, von Bohlen und Halbach O, Panke J, Holter SM, Garrett L, Wittig K, Schneider M, Schmitt C, Calzada-Wack J, Neff F, Becker L, Prehn C, Kutscherjawy S, Endris V, Bacon C, Fuchs H, Gailus-Durner V, Berger S, Schonig K, Adamski J, Klopstock T, Esposito I, Wurst W, de Angelis MH, Rappold G, Wieland T, Bartsch D (2012) Srgap3−/− mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 26(11):4418–4428. doi: 10.1096/fj.11-202317
  58. Ward NL, Stanford LE, Brown RE, Hagg T (2000) Cholinergic medial septum neurons do not degenerate in aged 129/Sv control or p75(NGFR)−/−mice. Neurobiol Aging 21(1):125–134CrossRefPubMedGoogle Scholar
  59. Wright JW, Alt JA, Turner GD, Krueger JM (2004) Differences in spatial learning comparing transgenic p75 knockout, New Zealand Black, C57BL/6, and Swiss Webster mice. Behav Brain Res 153(2):453–458. doi: 10.1016/j.bbr.2004.01.001 CrossRefPubMedGoogle Scholar
  60. Yeo TT, Chua-Couzens J, Butcher LL, Bredesen DE, Cooper JD, Valletta JS, Mobley WC, Longo FM (1997) Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J Neurosci 17(20):7594–7605PubMedGoogle Scholar
  61. Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF (2007) p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci 27(19):5146–5155. doi: 10.1523/jneurosci.0654-07.2007 CrossRefPubMedGoogle Scholar
  62. Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25(43):9989–9999. doi: 10.1523/JNEUROSCI.2492-05.2005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Dokter
    • 1
  • R. Busch
    • 1
  • R. Poser
    • 1
  • M. A. Vogt
    • 2
  • V. von Bohlen und Halbach
    • 1
  • P. Gass
    • 2
  • K. Unsicker
    • 3
  • O. von Bohlen und Halbach
    • 1
    Email author
  1. 1.Institute of Anatomy and Cell BiologyUniversitätsmedizin GreifswaldGreifswaldGermany
  2. 2.Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  3. 3.Department of Molecular Embryology, Institute of Anatomy and Cell BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations