Brain Structure and Function

, Volume 220, Issue 3, pp 1861–1866 | Cite as

Midbrain volume predicts fMRI and ERP measures of reward reactivity

  • Joshua M. Carlson
  • Dan Foti
  • Eddie Harmon-Jones
  • Greg H. Proudfit
Short Communication

Abstract

Ventral striatal activation measured with functional magnetic resonance imaging (fMRI) and feedback negativity amplitude measured with event-related potentials (ERPs) are each enhanced during reward processing. Recent research has found that these two neural measures of reward processing are also related to one another, such that increases in ventral striatal activity are accompanied by increases in the amplitude of the feedback negativity. Although there is a long history of research implicating the midbrain dopamine system in reward processing, there has been little research into the possibility that structural variability in the midbrain may be linked to functional variability in reward reactivity. Here, we used structural MRI to measure midbrain volumes in addition to fMRI and ERP measures of functional neural reactivity to rewards in a simple gambling task. The results suggest that as midbrain volumes increase, fMRI reward reactivity in the ventral striatum and medial prefrontal cortex also increases. A similar relationship exists between midbrain structure and the amplitude of the feedback negativity; further, this relationship is mediated specifically by activity in the ventral striatum. These data demonstrate convergence between neuroanatomical, hemodynamic, and electrophysiological measures. Thus, structural variability in the midbrain relates to variability in fMRI and ERP measures of functional reward reactivity, which may play a critical role in reward-related psychopathologies and the treatment of these disorders.

Keywords

Reward Striatum Volume Morphology Feedback negativity VBM 

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821. doi:10.1006/Nimg.0582 CrossRefPubMedGoogle Scholar
  2. Bora E, Fornito A, Pantelis C, Yucel M (2012) Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 138(1–2):9–18. doi:10.1016/j.jad.2011.03.049 CrossRefPubMedGoogle Scholar
  3. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611CrossRefPubMedGoogle Scholar
  4. Bress JN, Smith E, Foti D, Klein DN, Hajcak G (2012) Neural response to reward and depressive symptoms in late childhood to early adolescence. Biol Psychol 89(1):156–162. doi:10.1016/j.biopsycho.2011.10.004 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bress JN, Foti D, Kotov R, Klein DN, Hajcak G (2013a) Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology 50(1):74–81. doi:10.1111/j.1469-8986.2012.01485.x CrossRefPubMedGoogle Scholar
  6. Bress JN, Meyer A, Hajcak G (2013b) Differentiating anxiety and depression in children and adolescents: evidence from event-related brain potentials. J Clin Child Adolesc Psychol. doi:10.1080/15374416.2013.814544 PubMedGoogle Scholar
  7. Carlson JM, Beacher F, Reinke KS, Habib R, Harmon-Jones E, Mujica-Parodi LR, Hajcak G (2012) Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: a voxel-based morphometry result and replication. Neuroimage 59(2):1713–1718. doi:10.1016/J.Neuroimage.09.040 CrossRefPubMedGoogle Scholar
  8. Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G (2011) Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: a combined ERP and fMRI study. Neuroimage 57(4):1608–1616. doi:10.1016/J.Neuroimage.05.037 CrossRefPubMedGoogle Scholar
  9. Carlson JM, Cha J, Harmon-Jones E, Mujica-Parodi LR, Hajcak G (2013) Influence of the BDNF genotype on amygdalo-prefrontal white matter microstructure is linked to nonconscious attention bias to threat. Cereb Cortex. doi:10.1093/cercor/bht089 Google Scholar
  10. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493(7433):532–536. doi:10.1038/nature11713 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96CrossRefPubMedGoogle Scholar
  12. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J, Hochberg H, Murrough J, Strohmayer E, Stern E, Silbersweig DA (2006) Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 163(10):1784–1790. doi:10.1176/appi.ajp.163.10.1784 CrossRefPubMedGoogle Scholar
  13. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29(6):683–695. doi:10.1002/hbm.20426 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Foti D, Hajcak G (2009) Depression and reduced sensitivity to non-rewards versus rewards: evidence from event-related potentials. Biol Psychol 81(1):1–8CrossRefPubMedGoogle Scholar
  15. Foti D, Weinberg A, Dien J, Hajcak G (2011) Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: temporospatial principal components analysis and source localization of the feedback negativity. Hum Brain Mapp 32(12):2207–2216. doi:10.1002/hbm.21182 CrossRefPubMedGoogle Scholar
  16. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333PubMedGoogle Scholar
  17. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295(5563):2279–2282. doi:10.1126/science.1066893295/5563/2279 CrossRefPubMedGoogle Scholar
  18. Habib R, Dixon MR (2010) Neurobehavioral evidence for the “Near-Miss” effect in pathological gamblers. J Exp Anal Behav 93(3):313–328. doi:10.1901/jeab.2010.93-313 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Hajcak G, Moser JS, Holroyd CB, Simons RF (2006) The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biol Psychol 71(2):148–154. doi: 10.1016/j.biopsycho.2005.04.001 CrossRefPubMedGoogle Scholar
  20. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109(4):679–709CrossRefPubMedGoogle Scholar
  21. Holroyd CB, Larsen JT, Cohen JD (2004) Context dependence of the event-related brain potential associated with reward and punishment. Psychophysiology 41(2):245–253. doi:10.1111/j.1469-8986.2004.00152.x CrossRefPubMedGoogle Scholar
  22. Holroyd CB, Hajcak G, Larsen JT (2006) The good, the bad and the neutral: electrophysiological responses to feedback stimuli. Brain Res 1105(1):93–101. doi:10.1016/j.brainres.2005.12.015 CrossRefPubMedGoogle Scholar
  23. Holroyd CB, Pakzad-Vaezi KL, Krigolson OE (2008) The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology 45(5):688–697. doi:10.1111/j.1469-8986.2008.00668.x CrossRefPubMedGoogle Scholar
  24. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58(11):843–853. doi:10.1016/j.biopsych.2005.05.019 CrossRefPubMedGoogle Scholar
  25. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690. doi:10.1001/archgenpsychiatry.2011.60 CrossRefPubMedGoogle Scholar
  26. Knutson B, Bossaerts P (2007) Neural antecedents of financial decisions. J Neurosci 27(31):8174–8177. doi:10.1523/JNEUROSCI.1564-07.2007 CrossRefPubMedGoogle Scholar
  27. Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, Oh YW, Lee MS, Ham BJ (2011) Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord 133(1–2):128–136. doi:10.1016/j.jad.2011.04.006 CrossRefPubMedGoogle Scholar
  28. Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a generic” neural system for error detection. J Cogn Neurosci 9(6):788–798CrossRefPubMedGoogle Scholar
  29. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159. doi:10.1016/j.biopsych.2005.09.018 CrossRefPubMedGoogle Scholar
  30. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5):815–82CrossRefPubMedGoogle Scholar
  31. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427CrossRefPubMedGoogle Scholar
  32. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, Dougherty DD, Iosifescu DV, Rauch SL, Fava M (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166(6):702–710. doi:10.1176/appi.ajp.2008.08081201 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Plichta MM, Scheres A (2013) Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2013.07.012 PubMedCentralPubMedGoogle Scholar
  34. Plichta MM, Wolf I, Hohmann S, Baumeister S, Boecker R, Schwarz AJ, Zangl M, Mier D, Diener C, Meyer P, Holz N, Ruf M, Gerchen MF, Bernal-Casas D, Kolev V, Yordanova J, Flor H, Laucht M, Banaschewski T, Kirsch P, Meyer-Lindenberg A, Brandeis D (2013) Simultaneous EEG and fMRI reveals a causally connected subcortical-cortical network during reward anticipation. J Neurosci 33(36):14526–14533. doi:10.1523/JNEUROSCI.0631-13.2013 CrossRefPubMedGoogle Scholar
  35. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14(9):609–625. doi:10.1038/nrn3381 CrossRefPubMedGoogle Scholar
  36. Sabatinelli D, Bradley MM, Lang PJ, Costa VD, Versace F (2007) Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. J Neurophysiol 98(3):1374–1379. doi:10.1152/jn.00230.2007 CrossRefPubMedGoogle Scholar
  37. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacol 33(2):368–377. doi:10.1038/sj.npp.1301408 CrossRefGoogle Scholar
  38. Senior C (2003) Beauty in the brain of the beholder. Neuron 38(4):525–528CrossRefPubMedGoogle Scholar
  39. Sheline YI, Mittler BL, Mintun MA (2002) The hippocampus and depression. Eur Psychiatry 17(Suppl 3):300–305CrossRefPubMedGoogle Scholar
  40. Wacker J, Dillon DG, Pizzagalli DA (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 46(1):327–337. doi:10.1016/j.neuroimage.2009.01.058 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Walter M, Bermpohl F, Mouras H, Schiltz K, Tempelmann C, Rotte M, Heinze HJ, Bogerts B, Northoff G (2008) Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 40(4):1482–1494. doi:10.1016/j.neuroimage.2008.01.040 CrossRefPubMedGoogle Scholar
  42. Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340. doi:10.1146/annurev.ne.19.030196.001535 CrossRefPubMedGoogle Scholar
  43. Woermann FG, Free SL, Koepp MJ, Ashburner J, Duncan JS (1999) Voxel-by-voxel comparison of automatically segmented cerebral gray matter - A rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage 10(4):373–384CrossRefPubMedGoogle Scholar
  44. Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531(1–2):225–231CrossRefPubMedGoogle Scholar
  45. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536. doi:10.1038/nn.3045 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Zink CF, Tong Y, Chen Q, Bassett DS, Stein JL, Meyer-Lindenberg A (2008) Know your place: neural processing of social hierarchy in humans. Neuron 58(2):273–283. doi:10.1016/j.neuron.2008.01.025 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joshua M. Carlson
    • 1
  • Dan Foti
    • 2
  • Eddie Harmon-Jones
    • 3
  • Greg H. Proudfit
    • 4
  1. 1.Department of PsychologyNorthern Michigan UniversityMarquetteUSA
  2. 2.Department of PsychologyPurdue UniversityWest LafayetteUSA
  3. 3.School of PsychologyThe University of New South WalesSydneyAustralia
  4. 4.Department of PsychologyStony Brook UniversityStony BrookUSA

Personalised recommendations