Advertisement

Brain Structure and Function

, Volume 220, Issue 2, pp 645–661 | Cite as

Influence of ontogenetic age on the role of dentate granule neurons

  • Sophie Tronel
  • Valérie Lemaire
  • Vanessa Charrier
  • Marie-Françoise Montaron
  • Djoher Nora Abrous
Original Article

Abstract

New neurons are continuously produced in the adult dentate gyrus of the hippocampus, a key structure in learning and memory. It has been shown that adult neurogenesis is crucial for normal memory processing. However, it is not known whether neurons born during the developmental period and during adulthood support the same functions. Here, we demonstrate that neurons born in neonates (first postnatal week) are activated in different memory processes when they are mature compared to neurons born in adults. By imaging the activation of these two different neuron generations in the same rat and using the IEG Zif268 and Fos, we show that these neurons are involved in discriminating dissimilar contexts and spatial problem solving, respectively. These findings demonstrate that the ontogenetic stage during which neurons are generated is crucial for their function within the memory network.

Keywords

Adult neurogenesis Hippocampus Spatial memory Developmental neurogenesis Memory 

Notes

Acknowledgments

We thank Dr. M. Koehl and Dr. G. Ferreira for their helpful discussions and comments. We acknowledge C. Dupuy and T. Chevalier for their technical help. The microscopy was done in the Bordeaux Imaging Center a service unit of the CNRS-INSERM and Bordeaux University, member of the national infrastructure France BioImaging. The help of Philippe Legros, Christel Poujol, Sébastien Marais is acknowledged. This work was supported by the Institut National de la Santé et de la Recherche Médicale, Région Aquitaine and by the Agence Nationale pour la Recherche (to DNA).

Conflict of interest

The authors declare no competing financial interests.

References

  1. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2):523–569CrossRefPubMedGoogle Scholar
  2. Akers KG, Arruda-Carvalho M, Josselyn SA, Frankland PW (2012) Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learn Mem 19(12):598–604. doi: 10.1101/lm.027581.112 CrossRefPubMedGoogle Scholar
  3. Albert JR (1987) Early learning and ontogenetic adaptation. In: Krasnegor NA, Blass EM, Hofer MA, Smotherman WP (eds) Perinatal development: a psychological perspective, vol 1. Academic Press, INC, pp 11–38Google Scholar
  4. Campbell BA, Spear NE (1972) Ontogeny of memory. Psychol Rev 79(3):215–236CrossRefPubMedGoogle Scholar
  5. Campbell NR, Fernandes CC, John D, Lozada AF, Berg DK (2011) Nicotinic control of adult-born neuron fate. Biochem Pharmacol 82(8):820–827. doi: 10.1016/j.bcp.2011.06.021 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Clark RE, Broadbent NJ, Squire LR (2005) Hippocampus and remote spatial memory in rats. Hippocampus 15(2):260–272. doi: 10.1002/hipo.20056 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213CrossRefPubMedCentralPubMedGoogle Scholar
  8. Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? BehavBrain Res 142(1–2):17–30Google Scholar
  9. Denenberg VH (1972) Readings in the development of behavior. Sinauer Associates Inc, StamfordGoogle Scholar
  10. Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:00312. doi: 10.7554/eLife.00312 CrossRefGoogle Scholar
  11. Dumas TC (2005) Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus 15(5):562–578. doi: 10.1002/hipo.20077 CrossRefPubMedGoogle Scholar
  12. Dupret D, Fabre A, Dobrossy MD, Panatier A, Rodriguez JJ, Lamarque S, Lemaire V, Oliet SH, Piazza PV, Abrous DN (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoSBiol 5(8):e214CrossRefGoogle Scholar
  13. Dupret D, Revest JM, Koehl M, Ichas JF, De Giorgi F, Costet P, Abrous DN, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE 3(4):e1959CrossRefPubMedCentralPubMedGoogle Scholar
  14. Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4(5):5464CrossRefGoogle Scholar
  15. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566CrossRefPubMedCentralPubMedGoogle Scholar
  16. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15(12):1700–1706. doi: 10.1038/nn.3260 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Guzowski JF, Timlin JA, Roysam B, McNaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15(5):599–606. doi: 10.1016/j.conb.2005.08.018 CrossRefPubMedGoogle Scholar
  18. Harlow HF, Harlow MK, Rueping RR, Mason WA (1960) Performance of infant rhesus monkeys on discrimination learning, delayed response, and discrimination learning set. J Comp Physiol Psychol 53:113–121CrossRefPubMedGoogle Scholar
  19. Hofacer RD, Deng M, Ward CG, Joseph B, Hughes EA, Jiang C, Danzer SC, Loepke AW (2013) Cell age-specific vulnerability of neurons to anesthetic toxicity. Ann Neurol 73(6):695–704. doi: 10.1002/ana.23892 CrossRefPubMedGoogle Scholar
  20. Jackson JH (1958) Evolution and dissolution of the nervous system. In: Taylor J (ed) Selected writings of John Hughlings Jackson, vol 2. New York Basic Books, New York, pp 44–63Google Scholar
  21. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362. doi: 10.1038/nn1847 CrossRefPubMedGoogle Scholar
  22. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452CrossRefPubMedGoogle Scholar
  23. Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, Bossert JM, Nair SG, Uejima JL, Marin MT, Mitchell TB, Farquhar D, Ghosh SC, Mattson BJ, Hope BT (2009) Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 12(8):1069–1073. doi: 10.1038/nn.2364 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kron MM, Zhang H, Parent JM (2010) The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci Off J Soc Neurosci 30(6):2051–2059. doi: 10.1523/JNEUROSCI.5655-09.2010 CrossRefGoogle Scholar
  25. Kruger HS, Brockmann MD, Salamon J, Ittrich H, Hanganu-Opatz IL (2012) Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol Learn Mem 97(4):470–481. doi: 10.1016/j.nlm.2012.04.001 CrossRefPubMedGoogle Scholar
  26. Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB (2010) Development of the spatial representation system in the rat. Science 328(5985):1576–1580. doi: 10.1126/science.1188210 CrossRefPubMedGoogle Scholar
  27. Laplagne DA, Esposito MS, Piatti VC, Morgenstern NA, Zhao C, van PH, Gage FH, Schinder AF (2006) Functional convergence of neurons generated in the developing and adult hippocampus. PLoSBiol 4(12):409CrossRefGoogle Scholar
  28. Laplagne DA, Kamienkowski JE, Esposito MS, Piatti VC, Zhao C, Gage FH, Schinder AF (2007) Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. Eur J Neurosci 25(10):2973–2981. doi: 10.1111/j.1460-9568.2007.05549.x CrossRefPubMedGoogle Scholar
  29. Lavenex P, Banta Lavenex P (2013) Building hippocampal circuits to learn and remember: insights into the development of human memory. Behav Brain Res. doi: 10.1016/j.bbr.2013.02.007 PubMedGoogle Scholar
  30. Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97(20):11032–11037CrossRefPubMedCentralPubMedGoogle Scholar
  31. Lemaire V, Tronel S, Montaron MF, Fabre A, Dugast E, Abrous DN (2012) Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci Off J Soc Neurosci 32(9):3101–3108. doi: 10.1523/JNEUROSCI.4731-11.2012 CrossRefGoogle Scholar
  32. Leuner B, Glasper ER, Gould E (2009) Thymidine analog methods for studies of adult neurogenesis are not equally sensitive. J Comp Neurol 517(2):123–133. doi: 10.1002/cne.22107 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189(4):699–710. doi: 10.1002/cne.901890406 CrossRefPubMedGoogle Scholar
  34. Lucassen PJ, Naninck EF, van Goudoever JB, Fitzsimons C, Joels M, Korosi A (2013) Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 36(11):621–631. doi: 10.1016/j.tins.2013.08.002 CrossRefPubMedGoogle Scholar
  35. Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335(6073):1238–1242. doi: 10.1126/science.1214956 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Mathews EA, Morgenstern NA, Piatti VC, Zhao C, Jessberger S, Schinder AF, Gage FH (2010) A distinctive layering pattern of mouse dentate granule cells is generated by developmental and adult neurogenesis. J Comp Neurol 518(22):4479–4490. doi: 10.1002/cne.22489 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Moye TB, Rudy JW (1987) Ontogenesis of trace conditioning in young rats: dissociation of associative and memory processes. Dev Psychobiol 20(4):405–414. doi: 10.1002/dev.420200405 CrossRefPubMedGoogle Scholar
  38. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201. doi: 10.1016/j.cell.2012.01.046 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Nokia MS, Sisti HM, Choksi MR, Shors TJ (2012) Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis. PLoS ONE 7(2):31375. doi: 10.1371/journal.pone.0031375 CrossRefGoogle Scholar
  40. Oppenheim RW (1980) Metamorphosis and adaptation in the behavior of developing organisms. Dev Psychobiol 13(4):353–356. doi: 10.1002/dev.420130402 CrossRefPubMedGoogle Scholar
  41. Piaget J, Inhelder B (1969) The psychology of the child. New York Basic Books Inc, New YorkGoogle Scholar
  42. Ribordy F, Jabes A, Banta Lavenex P, Lavenex P (2013) Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cogn Psychol 66(1):1–29. doi: 10.1016/j.cogpsych.2012.08.001 CrossRefPubMedGoogle Scholar
  43. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533CrossRefPubMedCentralPubMedGoogle Scholar
  44. Rudy JW, Cheatle MD (1977) Odor-aversion learning in neonatal rats. Science 198(4319):845–846CrossRefPubMedGoogle Scholar
  45. Rudy JW, Hyson RL (1984) Ontogenesis of learning: III. Variation in the rat’s differential reflexive and learned responses to sound frequencies. Dev Psychobiol 17(3):285–300. doi: 10.1002/dev.420170308 CrossRefPubMedGoogle Scholar
  46. Rudy JW, Stadler-Morris S, Albert P (1987) Ontogeny of spatial navigation behaviors in the rat: dissociation of “proximal”- and “distal”-cue-based behaviors. Behav Neurosci 101(1):62–73CrossRefPubMedGoogle Scholar
  47. Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240(4857):1328–1331CrossRefPubMedGoogle Scholar
  48. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223. doi: 10.1038/nrn2573 CrossRefPubMedGoogle Scholar
  49. Schenk F (1985) Development of place navigation in rats from weaning to puberty. Behav Neural Biol 43(1):69–85CrossRefPubMedGoogle Scholar
  50. Schlessinger AR, Cowan WM, Gottlieb DI (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 159(2):149–175. doi: 10.1002/cne.901590202 CrossRefPubMedGoogle Scholar
  51. Scott RC, Richard GR, Holmes GL, Lenck-Santini PP (2011) Maturational dynamics of hippocampal place cells in immature rats. Hippocampus 21(4):347–353. doi: 10.1002/hipo.20789 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Snyder JS, Clifford MA, Jeurling SI, Cameron HA (2012) Complementary activation of hippocampal-cortical subregions and immature neurons following chronic training in single and multiple context versions of the water maze. Behav Brain Res 227(2):330–339. doi: 10.1016/j.bbr.2011.06.025 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Stone SS, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M, Lozano AM, Frankland PW (2011) Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 21(12):1348–1362. doi: 10.1002/hipo.20845 CrossRefPubMedGoogle Scholar
  54. Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN (2010a) Adult-born neurons are necessary for extended contextual discrimination. HippocampusGoogle Scholar
  55. Tronel S, Fabre A, Charrier V, Oliet SH, Gage FH, Abrous DN (2010b) Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA 107(17):7963–7968. doi: 10.1073/pnas.0914613107 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Trouche S, Bontempi B, Roullet P, Rampon C (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci USA 106(14):5919–5924CrossRefPubMedCentralPubMedGoogle Scholar
  57. Vega CJ, Peterson DA (2005) Stem cell proliferative history in tissue revealed by temporal halogenated thymidine analog discrimination. Nat Methods 2(3):167–169. doi: 10.1038/nmeth741 CrossRefPubMedGoogle Scholar
  58. Wei L, Meaney MJ, Duman RS, Kaffman A (2011) Affiliative behavior requires juvenile, but not adult neurogenesis. J Neurosci Off J Soc Neurosci 31(40):14335–14345. doi: 10.1523/JNEUROSCI.1333-11.2011 CrossRefGoogle Scholar
  59. Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Development of the hippocampal cognitive map in preweanling rats. Science 328(5985):1573–1576. doi: 10.1126/science.1188224 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Wills TJ, Barry C, Cacucci F (2012) The abrupt development of adult-like grid cell firing in the medial entorhinal cortex. Front Neural Circuits 6:21. doi: 10.3389/fncir.2012.00021 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sophie Tronel
    • 1
    • 2
  • Valérie Lemaire
    • 1
    • 2
  • Vanessa Charrier
    • 1
    • 2
  • Marie-Françoise Montaron
    • 1
    • 2
  • Djoher Nora Abrous
    • 1
    • 2
  1. 1.Inserm U862BordeauxFrance
  2. 2.Université de BordeauxBordeauxFrance

Personalised recommendations