Advertisement

Brain Structure and Function

, Volume 220, Issue 2, pp 1145–1159 | Cite as

Disrupted brain anatomical connectivity in medication-naïve patients with first-episode schizophrenia

  • Ruibin Zhang
  • Qinling Wei
  • Zhuang Kang
  • Andrew Zalesky
  • Meng Li
  • Yong Xu
  • Leijun Li
  • Junjing Wang
  • Liangrong Zheng
  • Bin Wang
  • Jingping Zhao
  • Jinbei ZhangEmail author
  • Ruiwang HuangEmail author
Original Article

Abstract

Previous studies suggested that the topological properties of brain anatomical networks may be aberrant in schizophrenia (SCZ), and most of them focused on the chronic and antipsychotic-medicated SCZ patients which may introduce various confounding factors due to antipsychotic medication and duration of illness. To avoid those potential confounders, a desirable approach is to select medication-naïve, first-episode schizophrenia (FE-SCZ) patients. In this study, we acquired diffusion tensor imaging datasets from 30 FE-SCZ patients and 34 age- and gender-matched healthy controls. Taking a distinct gray matter region as a node, inter-regional connectivity as edge and the corresponding streamline counts as edge weight, we constructed whole-brain anatomical networks for both groups, calculated their topological parameters using graph theory, and compared their between-group differences using nonparametric permutation tests. In addition, network-based statistic method was utilized to identify inter-regional connections which were impaired in the FE-SCZ patients. We detected only significantly decreased inter-regional connections in the FE-SCZ patients compared to the controls. These connections were primarily located in the frontal, parietal, occipital, and subcortical regions. Although small-worldness was conserved in the FE-SCZ patients, we found that the network strength and global efficiency as well as the degree were significantly decreased, and shortest path length was significantly increased in the FE-SCZ patients compared to the controls. Most of the regions that showed significantly decreased nodal parameters belonged to the top–down control, sensorimotor, basal ganglia, and limbic-visual system systems. Correlation analysis indicated that the nodal efficiency in the sensorimotor system was negatively correlated with the severity of psychosis symptoms in the FE-SCZ patients. Our results suggest that the network organization is changed in the early stages of the SCZ disease process. Our findings provide useful information for further understanding the brain white matter dysconnectivity of schizophrenia.

Keywords

Diffusion tensor imaging (DTI) Tractography Networks Robustness Dysconnectivity 

Notes

Acknowledgments

This work was partly supported by the 3rd Affiliated Hospital of Sun Yat-sen University, the funding of National Natural Science Foundation of China (Grant Numbers: 81071149, 81271548, and 81371535), Natural Science Foundation of Guangdong Province (Grant Numbers: S2012010009027), and Scientific Research Foundation for the Returned Overseas Chinese Scholars (RH), State Education Ministry of China. The authors appreciate the editing assistance of Drs. Rhoda E. and Edmund F. Perozzi. The authors also would like to thank the anonymous reviewers for their constructive comments and suggestions.

Conflict of interest

The authors reported no biomedical financial interests or potential of conflicts of interest.

Supplementary material

429_2014_706_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1517 kb)

References

  1. Adams R, David AS (2007) Patterns of anterior cingulate activation in schizophrenia: a selective review. Neuropsychiatric Dis Treat 3(1):87–101CrossRefGoogle Scholar
  2. Adriano F, Spoletini I, Caltagirone C, Spalletta G (2010) Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia. Schizophr Res 123(1):1–14PubMedCrossRefGoogle Scholar
  3. Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amador XF, Gorman JM (1998) Psychopathologic domains and insight in schizophrenia. Psychiatric Clin N Am 21(1):27–42CrossRefGoogle Scholar
  5. Asami T, Saito Y, Whitford TJ, Makris N, Niznikiewicz M, McCarley RW, Shenton ME, Kubicki M (2013) Abnormalities of middle longitudinal fascicle and disorganization in patients with schizophrenia. Schizophr Res 143(2–3):253–259PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Tren Cogn Sci 16(1):27–34CrossRefGoogle Scholar
  7. Barch DM, Keefe RS (2010) Anticipating DSM-V: opportunities and challenges for cognition and psychosis. Schizoph Bull 36(1):43–47PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. Neuroimage 54(2):1262–1279PubMedCrossRefGoogle Scholar
  9. Beasley CL, Dwork AJ, Rosoklija G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Tait AR, Straus SK, Honer WG (2009) Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia. Schizophr Res 109(1):159–166PubMedCentralPubMedCrossRefGoogle Scholar
  10. Benes FM (1993) Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr Bull 19(3):537PubMedCrossRefGoogle Scholar
  11. Bluhm RL, Clark CR, McFarlane AC, Moores KA, Shaw ME, Lanius RA (2011) Default network connectivity during a working memory task. Hum Brain Mapp 32(7):1029–1035PubMedCrossRefGoogle Scholar
  12. Bora E, Yücel M, Pantelis C (2010) Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr Bull 36(1):36–42PubMedCentralPubMedCrossRefGoogle Scholar
  13. Brown JA, Terashima KH, Burggren AC, Ercoli LM, Miller KJ, Small GW, Bookheimer SY (2011) Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proc Natl Acad Sci 108(51):20760–20765PubMedCentralPubMedCrossRefGoogle Scholar
  14. Butts CT (2009) Revisiting the foundations of network analysis. Science 325(5939):414–416PubMedCrossRefGoogle Scholar
  15. Calabrese DR, Wang L, Harms MP, Ratnanather JT, Barch DM, Cloninger CR, Thompson PA, Miller MI, Csernansky JG (2008) Cingulate gyrus neuroanatomy in schizophrenia subjects and their non-psychotic siblings. Schizophr Res 104(1):61–70PubMedCentralPubMedCrossRefGoogle Scholar
  16. Camchong J, Lim KO, Sponheim SR, MacDonald AW III (2009) Frontal white matter integrity as an endophenotype for schizophrenia: diffusion tensor imaging in monozygotic twins and patients’ nonpsychotic relatives. Front Hum Neurosci 3:35PubMedCentralPubMedCrossRefGoogle Scholar
  17. Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1(3):179–186PubMedCrossRefGoogle Scholar
  18. Cheung V, Cheung C, McAlonan G, Deng Y, Wong J, Yip L, Tai K, Khong P, Sham P, Chua S (2008) A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol Med 38(06):877–885PubMedCrossRefGoogle Scholar
  19. Cheung V, Chiu C, Law C, Cheung C, Hui C, Chan K, Sham P, Deng M, Tai K, Khong P-L (2011) Positive symptoms and white matter microstructure in never-medicated first episode schizophrenia. Psychol Med 41(08):1709–1719PubMedCrossRefGoogle Scholar
  20. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci 104(26):11073–11078PubMedCentralPubMedCrossRefGoogle Scholar
  21. Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J, James S, Voets N, Watkins K, Matthews PM (2007) Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130(9):2375–2386PubMedCrossRefGoogle Scholar
  22. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28(28):7143–7152PubMedCrossRefGoogle Scholar
  23. Duff BJ, Macritchie KA, Moorhead TW, Lawrie SM, Blackwood DH (2013) Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophr Res 147(1):1–13PubMedCrossRefGoogle Scholar
  24. Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108(1):3–10PubMedCrossRefGoogle Scholar
  25. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Amer J Psychiatry 165(8):1015CrossRefGoogle Scholar
  26. Exner C, Weniger G, Schmidt-Samoa C, Irle E (2006) Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res 84(2–3):386–396PubMedCrossRefGoogle Scholar
  27. Filippi M, Canu E, Gasparotti R, Agosta F, Valsecchi P, Lodoli G, Galluzzo A, Comi G, Sacchetti E (2013) Patterns of brain structural changes in first-contact, antipsychotic drug-naïve patients with schizophrenia. Amer J Neuroradiol. doi: 10.3174/ajnr.A3583 Google Scholar
  28. Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C (2009) Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 35(5):973–993PubMedCentralPubMedCrossRefGoogle Scholar
  29. Friedman J, Tang C, Carpenter D, Buchsbaum M, Schmeidler J, Flanagan L, Golembo S, Kanellopoulou I, Ng J, Hof P (2008) Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. Amer J Psychiatry 165(8):1024–1032CrossRefGoogle Scholar
  30. Friston KJ (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 395:68–79PubMedCrossRefGoogle Scholar
  31. Gasparotti R, Valsecchi P, Carletti F, Galluzzo A, Liserre R, Cesana B, Sacchetti E (2009) Reduced fractional anisotropy of corpus callosum in first-contact, antipsychotic drug-naive patients with schizophrenia. Schizophr Res 108(1):41–48PubMedCrossRefGoogle Scholar
  32. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS (2001) Thalamic volumes in patients with first-episode schizophrenia. Amer J Psychiatry 158(4):618–624CrossRefGoogle Scholar
  33. Ginestet CE, Nichols TE, Bullmore ET, Simmons A (2011) Brain network analysis: separating cost from topology using cost-integration. PLoS One 6(7):e21570PubMedCentralPubMedCrossRefGoogle Scholar
  34. Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT (2008) Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64(9):774–781PubMedCrossRefGoogle Scholar
  35. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009a) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536PubMedCentralPubMedCrossRefGoogle Scholar
  36. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009b) Age-and gender-related differences in the cortical anatomical network. J Neurosci 29(50):15684–15693PubMedCentralPubMedCrossRefGoogle Scholar
  37. Guo W, Liu F, Liu Z, Gao K, Xiao C, Chen H, Zhao J (2012) Right lateralized white matter abnormalities in first-episode, drug-naive paranoid schizophrenia. Neurosci Lett 531(1):5–9PubMedCrossRefGoogle Scholar
  38. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26(4):317–330PubMedCrossRefGoogle Scholar
  39. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7):e597PubMedCentralPubMedCrossRefGoogle Scholar
  40. Haijma SV, Van Haren N, Cahn W, Koolschijn PCM, Pol HEH, Kahn RS (2012) Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull 39(5):1129–1138PubMedCentralPubMedCrossRefGoogle Scholar
  41. Heitmiller DR, Nopoulos PC, Andreasen NC (2004) Changes in caudate volume after exposure to atypical neuroleptics in patients with schizophrenia may be sex-dependent. Schizophr Res 66(2):137–142PubMedCrossRefGoogle Scholar
  42. Heuser M, Thomann PA, Essig M, Bachmann S, Schroder J (2011) Neurological signs and morphological cerebral changes in schizophrenia: an analysis of NSS subscales in patients with first episode psychosis. Psychiatry Res 192(2):69–76PubMedCrossRefGoogle Scholar
  43. Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1(3):169–183PubMedCentralPubMedCrossRefGoogle Scholar
  44. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study†. Magn Reson Med 51(4):807–815PubMedCrossRefGoogle Scholar
  45. Kennedy D, Lange N, Makris N, Bates J, Meyer J, Caviness V (1998) Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 8(4):372–384PubMedCrossRefGoogle Scholar
  46. Koeda M, Takahashi H, Matsuura M, Asai K, Okubo Y (2013) Cerebral responses to vocal attractiveness and auditory hallucinations in schizophrenia: a functional MRI study. Front Human Neurosci 7:221CrossRefGoogle Scholar
  47. Kong X, Ouyang X, Tao H, Liu H, Li L, Zhao J, Xue Z, Wang F, Jiang S, Shan B (2011) Complementary diffusion tensor imaging study of the corpus callosum in patients with first-episode and chronic schizophrenia. J Psychiatry Neurosci 36(2):120PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kubicki M, Westin C-F, Nestor PG, Wible CG, Frumin M, Maier SE, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2003) Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiatry 54(11):1171–1180PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kunimatsu N, Aoki S, Kunimatsu A, Abe O, Yamada H, Masutani Y, Kasai K, Yamasue H, Ohtomo K (2012) Tract-specific analysis of white matter integrity disruption in schizophrenia. Psychiatry Res 201(2):136–143PubMedCrossRefGoogle Scholar
  50. Law I, Svarer C, Rostrup E, Paulson OB (1998) Parieto–occipital cortex activation during self-generated eye movements in the dark. Brain 121(11):2189–2200PubMedCrossRefGoogle Scholar
  51. Lee S-H, Kubicki M, Asami T, Seidman LJ, Goldstein JM, Mesholam-Gately RI, McCarley RW, Shenton ME (2013) Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor imaging (DTI) study. Schizophr Res 143(2–3):231–238PubMedCrossRefGoogle Scholar
  52. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349PubMedCrossRefGoogle Scholar
  53. Levitt JJ, Alvarado JL, Nestor PG, Rosow L, Pelavin PE, McCarley RW, Kubicki M, Shenton ME (2012) Fractional anisotropy and radial diffusivity: diffusion measures of white matter abnormalities in the anterior limb of the internal capsule in schizophrenia. Schizophr Res 136(1):55–62PubMedCrossRefGoogle Scholar
  54. Levitt JJ, Rosow LK, Nestor PG, Pelavin PE, Swisher TM, McCarley RW, Shenton ME (2013) A volumetric MRI study of limbic, associative and sensorimotor striatal subregions in schizophrenia. Schizophr Res 145(1–3):11–19PubMedCrossRefGoogle Scholar
  55. Lo C-Y, Wang P-N, Chou K-H, Wang J, He Y, Lin C-P (2010) Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J Neurosci 30(50):16876–16885PubMedCrossRefGoogle Scholar
  56. Løberg E-M, Nygård M, Berle JØ, Johnsen E, Kroken RA, Jørgensen HA, Hugdahl K (2012) An fMRI study of neuronal activation in schizophrenia patients with and without previous cannabis use. Front Psychiatry 3:94PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487PubMedCentralPubMedCrossRefGoogle Scholar
  58. Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS (1999) MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9(1):18–45PubMedCrossRefGoogle Scholar
  59. Makris N, Preti M, Asami T, Pelavin P, Campbell B, Papadimitriou G, Kaiser J, Baselli G, Westin C, Shenton M (2012) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218(4):951–968PubMedCentralPubMedCrossRefGoogle Scholar
  60. Mamah D, Harms MP, Wang L, Barch D, Thompson P, Kim J, Miller MI, Csernansky JG (2008) Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biol Psychiatry 64(2):111–120PubMedCentralPubMedCrossRefGoogle Scholar
  61. Manoach DS, Ketwaroo GA, Polli FE, Thakkar KN, Barton JJ, Goff DC, Fischl B, Vangel M, Tuch DS (2007) Reduced microstructural integrity of the white matter underlying anterior cingulate cortex is associated with increased saccadic latency in schizophrenia. Neuroimage 37(2):599–610PubMedCrossRefGoogle Scholar
  62. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies: a technical review. NMR Biomed 15(7–8):468–480PubMedCrossRefGoogle Scholar
  63. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269PubMedCrossRefGoogle Scholar
  64. Nakamura K, Kawasaki Y, Takahashi T, Furuichi A, Noguchi K, Seto H, Suzuki M (2012) Reduced white matter fractional anisotropy and clinical symptoms in schizophrenia: a voxel-based diffusion tensor imaging study. Psychiatry Res 202(3):233–238PubMedCrossRefGoogle Scholar
  65. Navari S, Dazzan P (2009) Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 39(11):1763PubMedCrossRefGoogle Scholar
  66. Nichols T, Hayasaka S (2003) Controlling the family-wise error rate in functional neuroimaging: a comparative review. Stat Meth Med Res 12(5):419–446CrossRefGoogle Scholar
  67. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25PubMedCrossRefGoogle Scholar
  68. Pajevic S, Basser PJ (2003) Parametric and non-parametric statistical analysis of DT-MRI data. J Magn Reson 161(1):1–14PubMedCrossRefGoogle Scholar
  69. Posnansky O, Kupriyanova Y, Shah NJ (2011) On the problem of gradient calibration in diffusion weighted imaging. Int J Imag Syst Tech 21(3):271–279Google Scholar
  70. Pujol N, Penadés R, Rametti G, Catalán R, Vidal-Piñeiro D, Palacios E, Bargallo N, Bernardo M, Junqué C (2013) Inferior frontal and insular cortical thinning is related to dysfunctional brain activation/deactivation during working memory task in schizophrenic patients. Psychiatry Res 214(2):94–101PubMedCrossRefGoogle Scholar
  71. Quan M, Lee S-H, Kubicki M, Kikinis Z, Rathi Y, Seidman LJ, Mesholam-Gately RI, Goldstein JM, McCarley RW, Shenton ME (2013) White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophr Res 145(1–3):1–10PubMedCentralPubMedCrossRefGoogle Scholar
  72. Rosenberger G, Kubicki M, Nestor PG, Connor E, Bushell GB, Markant D, Niznikiewicz M, Westin C-F, Kikinis R, Saykin JA (2008) Age-related deficits in fronto-temporal connections in schizophrenia: a diffusion tensor imaging study. Schizophr Res 102(1):181–188PubMedCentralPubMedCrossRefGoogle Scholar
  73. Rosenberger G, Nestor PG, Oh JS, Levitt JJ, Kindleman G, Bouix S, Fitzsimmons J, Niznikiewicz M, Westin C-F, Kikinis R (2012) Anterior limb of the internal capsule in schizophrenia: a diffusion tensor tractography study. Brain Imag Behav 6(3):417–425CrossRefGoogle Scholar
  74. Schlösser RG, Nenadic I, Wagner G, Güllmar D, von Consbruch K, Köhler S, Schultz CC, Koch K, Fitzek C, Matthews PM (2007) White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr Res 89(1):1–11PubMedCrossRefGoogle Scholar
  75. Seal ML, Yücel M, Fornito A, Wood SJ, Harrison BJ, Walterfang M, Pell GS, Pantelis C (2008) Abnormal white matter microstructure in schizophrenia: a voxel-wise analysis of axial and radial diffusivity. Schizophr Res 101(1):106–110PubMedCrossRefGoogle Scholar
  76. Shu N, Liu Y, Li K, Duan Y, Wang J, Yu C, Dong H, Ye J, He Y (2011) Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex 21(11):2565–2577PubMedCrossRefGoogle Scholar
  77. Sorg C, Manoliu A, Neufang S, Myers N, Peters H, Schwerthöffer D, Scherr M, Mühlau M, Zimmer C, Drzezga A (2013) Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 39(2):387–395PubMedCentralPubMedCrossRefGoogle Scholar
  78. Takahashi T, Nakamura Y, Nakamura K, Ikeda E, Furuichi A, Kido M, Kawasaki Y, Noguchi K, Seto H, Suzuki M (2012) Altered depth of the olfactory sulcus in first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 40:167–172PubMedCrossRefGoogle Scholar
  79. Takei K, Yamasue H, Abe O, Yamada H, Inoue H, Suga M, Muroi M, Sasaki H, Aoki S, Kasai K (2009) Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophr Res 114(1):119–127PubMedCrossRefGoogle Scholar
  80. Tang CY, Friedman J, Shungu D, Chang L, Ernst T, Stewart D, Hajianpour A, Carpenter D, Ng J, Mao X (2007) Correlations between diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (1H MRS) in schizophrenic patients and normal controls. BMC Psychiatry 7(1):25PubMedCentralPubMedCrossRefGoogle Scholar
  81. Turner JA, Damaraju E, Van Erp TG, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, Bustillo J, McEwen S (2013) A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 7:1Google Scholar
  82. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289PubMedCrossRefGoogle Scholar
  83. van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Pol HEH (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):15915–15926PubMedCrossRefGoogle Scholar
  84. Vercammen A, Morris R, Green MJ, Lenroot R, Kulkarni J, Carr VJ, Weickert CS, Weickert TW (2012) Reduced neural activity of the prefrontal cognitive control circuitry during response inhibition to negative words in people with schizophrenia. J Psychiatry Neurosci 37(6):379PubMedCentralPubMedCrossRefGoogle Scholar
  85. von Knorring L, Lindstrom E (1992) The Swedish version of the positive and negative syndrome scale (PANSS) for schizophrenia. Construct validity and interrater reliability. Acta Psychiatr Scand 86(6):463–468CrossRefGoogle Scholar
  86. Walterfang M, Yung A, Wood AG, Reutens DC, Phillips L, Wood SJ, Chen J, Velakoulis D, McGorry PD, Pantelis C (2008) Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophr Res 103(1):1–10PubMedCrossRefGoogle Scholar
  87. Wang L, Hosakere M, Trein JC, Miller A, Ratnanather JT, Barch DM, Thompson PA, Qiu A, Gado MH, Miller MI (2007) Abnormalities of cingulate gyrus neuroanatomy in schizophrenia. Schizophr Res 93(1):66–78PubMedCentralPubMedCrossRefGoogle Scholar
  88. Wang Q, Su T-P, Zhou Y, Chou K-H, Chen I-Y, Jiang T, Lin C-P (2012) Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 59(2):1085–1093PubMedCrossRefGoogle Scholar
  89. Wen W, He Y, Sachdev P (2011) Structural brain networks and neuropsychiatric disorders. Curr Opin Psychiatry 24(3):219–225PubMedCrossRefGoogle Scholar
  90. White T, Ehrlich S, Ho B-C, Manoach DS, Caprihan A, Schulz SC, Andreasen NC, Gollub RL, Calhoun VD, Magnotta VA (2012a) Spatial characteristics of white matter abnormalities in Schizophrenia. Schizophr Bull 39(5):1077–1086PubMedCentralPubMedCrossRefGoogle Scholar
  91. White T, Moeller S, Schmidt M, Pardo JV, Olman C (2012b) Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia. Hum Brain Mapp 33(8):1803–1811PubMedCentralPubMedCrossRefGoogle Scholar
  92. Whitford TJ, Wood SJ, Yung A, Cocchi L, Berger G, Shenton ME, Kubicki M, Phillips L, Velakoulis D, Yolken RH (2012) Structural abnormalities in the cuneus associated with herpes simplex virus (type 1) infection in people at ultra high risk of developing psychosis. Schizophr Res 135(1):175–180PubMedCentralPubMedCrossRefGoogle Scholar
  93. Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M, Kugel H, Arolt V, Bauer J, Pedersen A (2010) Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci 35(5):321PubMedCentralPubMedCrossRefGoogle Scholar
  94. Xia M, He Y (2011) Magnetic resonance imaging and graph theoretical analysis of complex brain networks in neuropsychiatric disorders. Brain Connect 1(5):349–365PubMedCrossRefGoogle Scholar
  95. Zalesky A, Fornito A, Bullmore ET (2010a) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197–1207PubMedCrossRefGoogle Scholar
  96. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010b) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3):970PubMedCrossRefGoogle Scholar
  97. Zalesky A, Fornito A, Seal ML, Cocchi L, Westin C-F, Bullmore ET, Egan GF, Pantelis C (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69(1):80–89PubMedCrossRefGoogle Scholar
  98. Zhang S, CsR Li (2012) Functional networks for cognitive control in a stop signal task: independent component analysis. Hum Brain Mapp 33(1):89–104PubMedCentralPubMedCrossRefGoogle Scholar
  99. Zhang X, Stein EA, Hong LE (2010) Smoking and schizophrenia independently and additively reduce white matter integrity between striatum and frontal cortex. Biol Psychiatry 68(7):674–677PubMedCentralPubMedCrossRefGoogle Scholar
  100. Zhang T, Wang J, Yang Y, Wu Q, Li B, Chen L, Yue Q, Tang H, Yan C, Lui S (2011) Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder. J Psychiatry Neurosci 36(1):23PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ruibin Zhang
    • 1
  • Qinling Wei
    • 2
    • 3
  • Zhuang Kang
    • 4
  • Andrew Zalesky
    • 5
  • Meng Li
    • 1
  • Yong Xu
    • 1
  • Leijun Li
    • 2
  • Junjing Wang
    • 1
  • Liangrong Zheng
    • 2
  • Bin Wang
    • 1
  • Jingping Zhao
    • 3
  • Jinbei Zhang
    • 2
    Email author
  • Ruiwang Huang
    • 1
    Email author
  1. 1.Brain Imaging Center, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for the Study of Applied Psychology, School of PsychologySouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of PsychiatryThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Mental Health Institute, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Department of RadiologyThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  5. 5.Melbourne Neuropsychiatry CentreUniversity of Melbourne and Melbourne HealthMelbourneAustralia

Personalised recommendations