Brain Structure and Function

, Volume 220, Issue 2, pp 1229–1236 | Cite as

The surface area of early visual cortex predicts the amplitude of the visual evoked potential

  • Torbjørn ElvsåshagenEmail author
  • Torgeir Moberget
  • Erlend Bøen
  • Per K. Hol
  • Ulrik F. Malt
  • Stein Andersson
  • Lars T. Westlye
Short Communication


The extensive and increasing use of structural neuroimaging in the neurosciences rests on the assumption of an intimate relationship between structure and function in the human brain. However, few studies have examined the relationship between advanced magnetic resonance imaging (MRI) indices of cerebral structure and conventional measures of cerebral functioning in humans. Here we examined whether MRI-based morphometric measures of early visual cortex—estimated using a probabilistic anatomical mask of primary visual cortex (V1)—can predict the amplitude of the visual evoked potential (VEP), i.e., an electroencephalogram signal that primarily reflects postsynaptic potentials in early visual cortical areas. We found that left, right, and total V1 surface area positively predicted the VEP amplitude. In addition, we showed, using whole brain analysis of local surface areal expansion/contraction, that the association between VEP amplitude and surface area was highly specific for regions within bilateral V1. Together, these findings indicate a strong, selective relationship between MRI-based structural measures and functional properties of the human cerebral cortex.


Magnetic resonance imaging Visual evoked potential Visual cortex Cortical thickness Cortical surface area 



This study was funded by the Research Council of Norway (167153/V50, 204966/F20), the South-Eastern Norway Regional Health Authority, and Oslo University Hospital—Rikshospitalet.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH, Aguirre GK (2012) The retinotopic organization of striate cortex is well predicted by surface topology. Curr Biol 22(21):2081–2085CrossRefPubMedCentralPubMedGoogle Scholar
  2. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC et al (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23(2):724–738CrossRefPubMedGoogle Scholar
  3. Cohen MX, Elger CE, Weber B (2008) Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making. Neuroimage 39(3):1396–1407CrossRefPubMedGoogle Scholar
  4. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194CrossRefPubMedGoogle Scholar
  5. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMedGoogle Scholar
  6. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMedGoogle Scholar
  7. Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D et al (2005) Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24(3):874–886CrossRefPubMedGoogle Scholar
  8. Di Russo F, Stella A, Spitoni G, Strappini F, Sdoia S, Galati G et al (2012) Spatiotemporal brain mapping of spatial attention effects on pattern-reversal ERPs. Hum Brain Mapp 33(6):1334–1351CrossRefPubMedCentralPubMedGoogle Scholar
  9. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312CrossRefPubMedGoogle Scholar
  10. Elvsåshagen T, Moberget T, Boen E, Boye B, Englin NO, Pedersen PO et al (2012) Evidence for impaired neocortical synaptic plasticity in bipolar II disorder. Biol Psychiatry 71(1):68–74CrossRefPubMedGoogle Scholar
  11. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207CrossRefPubMedGoogle Scholar
  13. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT et al (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84CrossRefPubMedGoogle Scholar
  14. Fuglø D, Pedersen H, Rostrup E, Hansen AE, Larsson HB (2012) Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging. Magn Reson Med 68(1):252–260CrossRefPubMedGoogle Scholar
  15. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78CrossRefPubMedCentralPubMedGoogle Scholar
  16. Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33(4):1093–1103CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hayasaka S, Nichols TE (2003) Validating cluster size inference: random field and permutation methods. Neuroimage 20(4):2343–2356CrossRefPubMedGoogle Scholar
  18. Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107(29):13135–13140CrossRefPubMedCentralPubMedGoogle Scholar
  19. Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL et al (2008) Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39(4):1585–1599CrossRefPubMedCentralPubMedGoogle Scholar
  20. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23(11):2521–2530CrossRefPubMedGoogle Scholar
  21. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R et al (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040CrossRefPubMedCentralPubMedGoogle Scholar
  22. Joyner AH, CR J, Bloss CS, Bakken TE, Rimol LM, Melle I et al (2009) A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci USA 106(36):15483–15488CrossRefPubMedCentralPubMedGoogle Scholar
  23. Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16(1):241–250CrossRefPubMedGoogle Scholar
  24. Liem F, Zaehle T, Burkhard A, Jancke L, Meyer M (2012) Cortical thickness of supratemporal plane predicts auditory N1 amplitude. Neuroreport 23(17):1026–1030CrossRefPubMedGoogle Scholar
  25. Luck SJ (2005) An introduction to the event-related potential technique. The MIT Press, CambridgeGoogle Scholar
  26. Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M, Mijovic B et al (2011) The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. Neuroimage 54(2):824–835CrossRefPubMedGoogle Scholar
  27. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP et al (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120(1):111–119CrossRefPubMedGoogle Scholar
  28. Perry G, Hamandi K, Brindley LM, Muthukumaraswamy SD, Singh KD (2013) The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. Neuroimage 68:83–92CrossRefPubMedGoogle Scholar
  29. Rimol LM, Hartberg CB, Nesvag R, Fennema-Notestine C, Hagler DJ Jr, Pung CJ et al (2010) Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 68(1):41–50CrossRefPubMedGoogle Scholar
  30. Romero-Garcia R, Atienza M, Cantero JL (2013) Predictors of coupling between structural and functional cortical networks in normal aging. Hum Brain Mapp. doi: 10.1002/hbm.22362 PubMedGoogle Scholar
  31. Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S, Thiran JP (2008) A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging 27(2):161–170CrossRefPubMedGoogle Scholar
  32. Schwarzkopf DS, Rees G (2013) Subjective size perception depends on central visual cortical magnification in human v1. PLoS One 8(3):e60550CrossRefPubMedCentralPubMedGoogle Scholar
  33. Schwarzkopf DS, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14(1):28–30CrossRefPubMedCentralPubMedGoogle Scholar
  34. Schwarzkopf DS, Robertson DJ, Song C, Barnes GR, Rees G (2012) The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex. J Neurosci 32(4):1507–1512CrossRefPubMedCentralPubMedGoogle Scholar
  35. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E (1998) The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(suppl 20):22–33PubMedGoogle Scholar
  36. Shipp S, Zeki S (1989) The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. Eur J Neurosci 1(4):309–332CrossRefPubMedGoogle Scholar
  37. Slotnick SD, Yantis S (2003) Efficient acquisition of human retinotopic maps. Hum Brain Mapp 18(1):22–29CrossRefPubMedGoogle Scholar
  38. Tobimatsu S, Celesia GG (2006) Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol 117(7):1414–1433CrossRefPubMedGoogle Scholar
  39. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141CrossRefPubMedGoogle Scholar
  40. Whittingstall K, Stroink G, Schmidt M (2007) Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp 28(2):134–142CrossRefPubMedGoogle Scholar
  41. Winkler AM, Sabuncu MR, Yeo BT, Fischl B, Greve DN, Kochunov P et al (2012) Measuring and comparing brain cortical surface area and other areal quantities. Neuroimage 61(4):1428–1443CrossRefPubMedCentralPubMedGoogle Scholar
  42. Wu J, Yan T, Zhang Z, Jin F, Guo Q (2012) Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging. Hum Brain Mapp 33(7):1727–1740CrossRefPubMedGoogle Scholar
  43. Wu J, Wang B, Yang J, Hikino Y, Takahashi S, Yan T et al (2013) Development of a method to present wide-view visual stimuli in MRI for peripheral visual studies. J Neurosci Methods 214(2):126–136CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Torbjørn Elvsåshagen
    • 1
    • 5
    Email author
  • Torgeir Moberget
    • 1
    • 6
  • Erlend Bøen
    • 1
    • 5
  • Per K. Hol
    • 2
  • Ulrik F. Malt
    • 1
    • 5
  • Stein Andersson
    • 1
    • 6
  • Lars T. Westlye
    • 3
    • 4
    • 6
  1. 1.Department of Psychosomatic MedicineOslo University HospitalOsloNorway
  2. 2.The Intervention CentreOslo University HospitalOsloNorway
  3. 3.Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
  4. 4.KG Jebsen Centre for Psychosis ResearchOslo University HospitalOsloNorway
  5. 5.Institute of Clinical MedicineUniversity of OsloOsloNorway
  6. 6.Department of PsychologyUniversity of OsloOsloNorway

Personalised recommendations