Brain Structure and Function

, Volume 220, Issue 2, pp 1063–1076 | Cite as

Anterior–posterior dissociation of the default mode network in dogs

  • Sreenath P. Kyathanahally
  • Hao Jia
  • Oleg M. Pustovyy
  • Paul Waggoner
  • Ronald Beyers
  • John Schumacher
  • Jay Barrett
  • Edward E. Morrison
  • Nouha Salibi
  • Thomas S. Denney
  • Vitaly J. Vodyanoy
  • Gopikrishna Deshpande
Original Article


The default mode network (DMN) in humans has been extensively studied using seed-based correlation analysis (SCA) and independent component analysis (ICA). While DMN has been observed in monkeys as well, there are conflicting reports on whether they exist in rodents. Dogs are higher mammals than rodents, but cognitively not as advanced as monkeys and humans. Therefore, they are an interesting species in the evolutionary hierarchy for probing the comparative functions of the DMN across species. In this study, we sought to know whether the DMN, and consequently its functions such as self-referential processing, are exclusive to humans/monkeys or can we also observe the DMN in animals such as dogs. To address this issue, resting state functional MRI data from the brains of lightly sedated dogs and unconstrained and fully awake dogs were acquired, and ICA and SCA were performed for identifying the DMN. Since anesthesia can alter resting state networks, confirming our results in awake dogs was essential. Awake dog imaging was accomplished by training the dogs to keep their head still using reinforcement behavioral adaptation techniques. We found that the anterior (such as anterior cingulate and medial frontal) and posterior regions (such as posterior cingulate) of the DMN were dissociated in both awake and anesthetized dogs.


Dog Resting state Awake animal imaging Rest animal imaging Functional MRI Default mode network (DMN) Independent component analysis 

Supplementary material

Supplementary material 1 (MPG 30584 kb)


  1. Andrews-Hanna JR et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Human Brain Mapp 7:254–266CrossRefGoogle Scholar
  3. Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26(7):1055–1064CrossRefPubMedGoogle Scholar
  4. Becerra L, Pendse G, Chang P-C, Bishop J, Borsook D (2011) Robust reproducible resting state networks in the awake rodent brain. PloS One 6(10):e25701. doi:10.1371/journal.pone.0025701
  5. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRefPubMedGoogle Scholar
  7. Berns G, Brooks A, Spivak M (2012) Functional MRI in awake unrestrained dogs. PloS One 7(5):e38027. doi:10.1371/journal.pone.0038027
  8. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  9. Bluhm RL et al (2008) Default mode network connectivity: effects of age, sex, and analytic approach. NeuroReport 19(8):887–891CrossRefPubMedGoogle Scholar
  10. Bokde AL et al (2006) Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129:1113–1124CrossRefPubMedGoogle Scholar
  11. Bonnelle V et al (2011) Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 31(38):13442–13451CrossRefPubMedGoogle Scholar
  12. Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775CrossRefPubMedGoogle Scholar
  13. Brown GD, Yamada S, Sejnowski TJ (2001) Independent component analysis at the neural cocktail party. Trends Neurosci 24(1):54–63CrossRefPubMedGoogle Scholar
  14. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57CrossRefPubMedGoogle Scholar
  15. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRefPubMedGoogle Scholar
  16. Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR (1994) Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 31:67–72CrossRefPubMedGoogle Scholar
  17. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapp 14(3):140–151CrossRefGoogle Scholar
  18. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapp 29(7):828–838CrossRefGoogle Scholar
  19. Castellanos FX et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337CrossRefPubMedCentralPubMedGoogle Scholar
  20. Chao-Gan Y, Yu-Feng Z (2010) DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI.” Frontiers Syst Neurosci 4(13). doi:10.3389/fnsys.2010.00013
  21. Cole, DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers Syst Neurosci 4(8). doi:10.3389/fnsys.2010.00008
  22. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA (2000) Mapping functionally related regions of brain with functional connectivity. Am J Neuroradiol 21(9):1636–1644PubMedGoogle Scholar
  23. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853CrossRefPubMedCentralPubMedGoogle Scholar
  24. Damoiseaux JS et al (2008) Reduced resting-state brain activity in the ‘‘default network’’ in normal aging. Cereb Cortex 18(8):1856–1864CrossRefPubMedGoogle Scholar
  25. Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24(1):55–65CrossRefPubMedCentralPubMedGoogle Scholar
  26. Datta R et al (2012) A digital atlas of the dog brain. PLoS ONE 7(12):e52140CrossRefPubMedCentralPubMedGoogle Scholar
  27. Deshpande G, Santhanam P, Hu X (2011) Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 54(2):1043–1052CrossRefPubMedCentralPubMedGoogle Scholar
  28. Esposito F et al (2009) Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol 147(1–2):11–20PubMedGoogle Scholar
  29. Fair DA et al (2009) Functional brain networks develop from a “local to distributed” organization.” PLoS Comput Biol 5(5):e1000381Google Scholar
  30. Fornito A, Bullmore ET (2010) What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? Curr Opin Psychiatry 23(3):239–249CrossRefPubMedGoogle Scholar
  31. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMedGoogle Scholar
  32. Fransson P et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104(39):15531–15536CrossRefPubMedCentralPubMedGoogle Scholar
  33. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak J (1995) Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapp 2(4):189–210CrossRefGoogle Scholar
  34. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355CrossRefPubMedGoogle Scholar
  35. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152(3):341–351CrossRefPubMedGoogle Scholar
  36. George MS, Ketter TA, Parekh PI, Herscovitch P, Post RM (1996) Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biol Psychiatry 40(9):859–871CrossRefPubMedGoogle Scholar
  37. Gilbert DT, Wilson TD (2007) Prospection: experiencing the future. Science 317(5843):1351–1354CrossRefPubMedGoogle Scholar
  38. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430CrossRefPubMedGoogle Scholar
  39. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258CrossRefPubMedCentralPubMedGoogle Scholar
  40. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642CrossRefPubMedCentralPubMedGoogle Scholar
  41. Greicius MD et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437CrossRefPubMedCentralPubMedGoogle Scholar
  42. Greicius MD et al (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847CrossRefPubMedCentralPubMedGoogle Scholar
  43. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694CrossRefPubMedGoogle Scholar
  44. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26(51):13338–13343CrossRefPubMedCentralPubMedGoogle Scholar
  45. Harrison BJ et al (2008) Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci USA 105(28):9781–9786CrossRefPubMedCentralPubMedGoogle Scholar
  46. Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125(Pt 8):1808–1814CrossRefPubMedGoogle Scholar
  47. Knyazev GG (2012) Extraversion and anterior vs. posterior DMN activity during self-referential thoughts. Frontiers Human Neurosci 6(348). doi:10.3389/fnhum.2012.00348
  48. Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31(9):3217–3224CrossRefPubMedGoogle Scholar
  49. Lei X, Zhao Z, Chen H (2013) Extraversion is encoded by scale-free dynamics of default mode network. Neuroimage 74:52–57CrossRefPubMedGoogle Scholar
  50. Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31(10):3776–3783CrossRefPubMedCentralPubMedGoogle Scholar
  51. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157CrossRefPubMedGoogle Scholar
  52. Long XY et al (2008) Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods 171(2):349–355CrossRefPubMedGoogle Scholar
  53. Lou HC et al (2004) Parietal cortex and representation of the mental Self. Proc Natl Acad Sci USA 101(17):6827–6832CrossRefPubMedCentralPubMedGoogle Scholar
  54. Lu H et al (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 104(46):18265–18269CrossRefPubMedCentralPubMedGoogle Scholar
  55. Lu H, Zou Q, Gu H, Raichle ME, Steina EA, Yanga Y (2011) Rat brains also have a default mode network. Proc Natl Acad Sci USA 109(10):3979–3984CrossRefGoogle Scholar
  56. Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage 27(4):824–834CrossRefPubMedGoogle Scholar
  57. Ma L, Wang B, Chen X, Xiong J (2007) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25(1):47–56CrossRefPubMedGoogle Scholar
  58. Mantini D et al (2011) Default mode of brain function in monkeys. J Neurosci 31(36):12954–12962CrossRefPubMedCentralPubMedGoogle Scholar
  59. Mayberg HS et al (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682PubMedGoogle Scholar
  60. Mitchell JP, Heatherton T, Macrae CN (2002) Distinct neural systems subserve person and object knowledge. Proc Natl Acad Sci USA 99(23):15238–15243CrossRefPubMedCentralPubMedGoogle Scholar
  61. Neafsey EJ, Terreberry RR, Hurley KM, Ruit KG, Frysztak RJ (1993) Anterior cingulate cortex in rodents: connections, visceral control functions, and implications for emotion. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 207–223Google Scholar
  62. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain–a meta-analysis of imaging studies on the self. Neuroimage 31(1):440–457CrossRefPubMedGoogle Scholar
  63. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348CrossRefPubMedGoogle Scholar
  64. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682CrossRefPubMedCentralPubMedGoogle Scholar
  65. Rombouts S, Scheltens P (2005) Functional connectivity in elderly controls and AD patients using resting state fMRI: a pilot study. Curr Alzheimer Res 2:115–116CrossRefPubMedGoogle Scholar
  66. Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedCentralPubMedGoogle Scholar
  67. Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface identification tool. Medical Image Anal 6(2):129–142CrossRefGoogle Scholar
  68. Song X-W et al (2011) REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PloS One 6(9):e25031. doi:10.1371/journal.pone.0025031
  69. Stamatakis EA, Adapa RM, Absalom AR, Menon DK (2010) Changes in resting neural connectivity during propofol sedation. PloS One 5(12):e14224Google Scholar
  70. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52(1):290–301CrossRefPubMedCentralPubMedGoogle Scholar
  71. Tian L et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400:39–43CrossRefPubMedGoogle Scholar
  72. Upadhyay J et al (2011) Default-mode-like network activation in awake rodents. PloS One 6(11):e27839Google Scholar
  73. Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534CrossRefPubMedGoogle Scholar
  74. Van den Heuvel MP, Mandl RC, Luigjes J, Pol Hulshoff HE (2008a) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28(43):10844–10851CrossRefPubMedGoogle Scholar
  75. Van den Heuvel MP, Mandl RC, HulshoffPol HE (2008b) Normalized group clustering of resting-state fMRI data. PloS One 3(4):e2001Google Scholar
  76. Vogt BA, Vogt L, Laureys S (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29(2):452–466CrossRefPubMedCentralPubMedGoogle Scholar
  77. Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19(3):513–531Google Scholar
  78. Wang K et al (2011) Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR Biomed 24(1):61–67CrossRefPubMedGoogle Scholar
  79. Wei L et al (2011) The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res 1419:68–75CrossRefPubMedGoogle Scholar
  80. Whalley HC et al (2005) Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain 128:2097–2108CrossRefPubMedGoogle Scholar
  81. Yang Z et al (2012) Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks. Neuroimage 63(1):403–414CrossRefPubMedGoogle Scholar
  82. Zhang N et al (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189(2):186–196CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sreenath P. Kyathanahally
    • 1
  • Hao Jia
    • 1
  • Oleg M. Pustovyy
    • 2
  • Paul Waggoner
    • 3
  • Ronald Beyers
    • 1
  • John Schumacher
    • 4
  • Jay Barrett
    • 5
  • Edward E. Morrison
    • 2
  • Nouha Salibi
    • 1
    • 6
  • Thomas S. Denney
    • 1
    • 7
  • Vitaly J. Vodyanoy
    • 2
  • Gopikrishna Deshpande
    • 1
    • 7
  1. 1.AU MRI Research Center, Department of Electrical and Computer EngineeringAuburn UniversityAuburnUSA
  2. 2.Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnUSA
  3. 3.Canine Detection Research InstituteAuburn UniversityAuburnUSA
  4. 4.Department of Clinical SciencesAuburn UniversityAuburnUSA
  5. 5.College of Veterinary MedicineAuburn UniversityAuburnUSA
  6. 6.MR R&D, Siemens HealthcareMalvernUSA
  7. 7.Department of PsychologyAuburn UniversityAuburnUSA

Personalised recommendations