Brain Structure and Function

, Volume 220, Issue 2, pp 1031–1049 | Cite as

Definition and characterization of an extended social-affective default network

  • Maren Amft
  • Danilo Bzdok
  • Angela R. Laird
  • Peter T. Fox
  • Leonhard Schilbach
  • Simon B. Eickhoff
Original Article

Abstract

Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.

Keywords

Default mode network Meta-analytic connectivity modeling Resting-state functional connectivity Social cognition Emotion 

Supplementary material

429_2013_698_MOESM1_ESM.tif (2 mb)
Supplementary material 1 (TIFF 2038 kb)
429_2013_698_MOESM2_ESM.tif (2.1 mb)
Supplementary material 2 (TIFF 2191 kb)
429_2013_698_MOESM3_ESM.tif (2.6 mb)
Supplementary material 3 (TIFF 2680 kb)
429_2013_698_MOESM4_ESM.tif (2 mb)
Supplementary material 4 (TIFF 1998 kb)

References

  1. Adams RB Jr, Rule NO, Franklin RG Jr, Wang E, Stevenson MT, Yoshikawa S, Ambady N (2010) Cross-cultural reading the mind in the eyes: an fMRI investigation. J Cogn Neurosci 22(1):97–108. doi:10.1162/jocn.2009.21187 CrossRefPubMedGoogle Scholar
  2. Adolphs R, Cahill L, Schul R, Babinsky R (1997) Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn Mem 4(3):291–300CrossRefPubMedGoogle Scholar
  3. Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117CrossRefPubMedGoogle Scholar
  4. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7(4):268–277. doi:10.1038/nrn1884 CrossRefPubMedGoogle Scholar
  5. Andrews-Hanna JR, Reidler JS, Huang C, Buckner RL (2010a) Evidence for the default network’s role in spontaneous cognition. J Neurophysiol 104(1):322–335. doi:10.1152/jn.0 0830.2009CrossRefPubMedCentralPubMedGoogle Scholar
  6. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010b) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562. doi:10.1016/j.neuron.2010.02.005 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851. doi:10.1016/j.neuroimage.2005.02.018 CrossRefPubMedGoogle Scholar
  8. Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Brain Res Rev 45(2):96–103. doi:10.1016/j.brainresrev.2004.02.004 CrossRefPubMedGoogle Scholar
  9. Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289. doi:10.1016/j.tics.2007.05.005 CrossRefPubMedGoogle Scholar
  10. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796. doi:10.1093/cercor/bhp055 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Blanke O, Arzy S (2005) The out-of-body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist 11(1):16–24. doi:10.1177/1073858404270885 CrossRefPubMedGoogle Scholar
  12. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57. doi:10.1016/j.tics.2006.11.004 CrossRefPubMedGoogle Scholar
  13. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi:10.1196/annals.1440.011 CrossRefPubMedGoogle Scholar
  14. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873. doi:10.1523/JNEUROSCI.5062-08.2009 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641CrossRefPubMedGoogle Scholar
  16. Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2012a) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp. doi:10.1002/hbm.22138 PubMedGoogle Scholar
  17. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012b) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217(4):783–796. doi:10.1007/s00429-012-0380-y CrossRefPubMedCentralPubMedGoogle Scholar
  18. Bzdok D, Langner R, Schilbach L, Engemann DA, Laird AR, Fox PT, Eickhoff SB (2013a) Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci 7:232. doi:10.3389/fnhum.2013.00232 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013a) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage (in press)Google Scholar
  20. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Eickhoff SB (2013c) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392. doi:10.1016/j.neuroimage.2013.05.046 CrossRefPubMedGoogle Scholar
  21. Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58(2):362–380. doi:10.1016/j.neuroimage.2011.06.027 CrossRefPubMedGoogle Scholar
  22. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583. doi:10.1093/brain/awl004 CrossRefPubMedGoogle Scholar
  23. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011) The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 70(8):785–793. doi:10.1016/j.biopsych.2011.05.025
  24. Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, Eickhoff SB (2013) Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex 23:2677–2689. doi:10.1093/cercor/bhs256 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Corbetta M, Shulman GL (1998) Human cortical mechanisms of visual attention during orienting and search. Philos Trans R Soc Lond B Biol Sci 353(1373):1353–1362. doi:10.1098/rstb.1998.0289 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. doi:10.1038/nrn755 CrossRefPubMedGoogle Scholar
  27. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853. doi:10.1073/pnas.0601417103 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist 13(6):580–593. doi:10.1177/1073858407304654 CrossRefPubMedGoogle Scholar
  29. Denny BT, Kober H, Wager TD, Ochsner KN (2012) A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J Cogn Neurosci 24(8):1742–1752. doi:10.1162/jocn_a_00233 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Derrfuss J, Mar RA (2009) Lost in localization: the need for a universal coordinate database. Neuroimage 48(1):1–7. doi:10.1016/j.neuroimage.2009.01.053 CrossRefPubMedGoogle Scholar
  31. Dimaggio G, Lysaker PH, Carcione A, Nicolo G, Semerari A (2008) Know yourself and you shall know the other to a certain extent: multiple paths of influence of self-reflection on mindreading. Conscious Cogn 17(3):778–789. doi:10.1016/j.concog.2008.02.005 CrossRefPubMedGoogle Scholar
  32. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118. doi:10.1007/s00429-008-0189-x CrossRefPubMedCentralPubMedGoogle Scholar
  33. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi:10.1002/hbm.20718 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57(3):938–949. doi:10.1016/j.neuroimage.2011.05.021 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361. doi:10.1016/j.neuroimage.2011.09.017 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Forbes CE, Grafman J (2010) The role of the human prefrontal cortex in social cognition and moral judgment. Annu Rev Neurosci 33:299–324. doi:10.1146/annurev-neuro-060909-153230 CrossRefPubMedGoogle Scholar
  37. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768–769Google Scholar
  38. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi:10.1073/pnas.0504136102 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29. doi:10.1002/hbm.20113 CrossRefPubMedGoogle Scholar
  40. Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42(3):1178–1184. doi:10.1016/j.neuroimage.2008.05.059 CrossRefPubMedGoogle Scholar
  41. Grabenhorst F, Rolls ET, Parris BA, d’Souza AA (2010) How the brain represents the reward value of fat in the mouth. Cereb Cortex 20(5):1082–1091. doi:10.1093/cercor/bhp169 CrossRefPubMedGoogle Scholar
  42. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642. doi:10.1073/pnas.0308627101 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001a) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98(7):4259–4264. doi:10.1073/pnas.071043098 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Gusnard DA, Raichle ME, Raichle ME (2001b) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694. doi:10.1038/35094500 CrossRefPubMedGoogle Scholar
  45. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM (2011) The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 69(4):301–308. doi:10.1016/j.biopsych.2010.09.034 CrossRefPubMedGoogle Scholar
  46. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108Google Scholar
  47. Hoffman WF, Schwartz DL, Huckans MS, McFarland BH, Meiri G, Stevens AA, Mitchell SH (2008) Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology 201(2):183–193. doi:10.1007/s00213-008-1261-1 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173. doi:10.1016/j.neuroimage.2003.11.013 CrossRefPubMedGoogle Scholar
  49. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60(4):2389–2398. doi:10.1016/j.neuroimage.2012.02.037 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125(Pt 8):1808–1814CrossRefPubMedGoogle Scholar
  51. Kellermann TS, Caspers S, Fox PT, Zilles K, Roski C, Laird AR, Eickhoff SB (2013) Task- and resting-state functional connectivity of brain regions related to affection and susceptible to concurrent cognitive demand. Neuroimage 72:69–82. doi:10.1016/j.neuroimage.2013.01.046 CrossRefPubMedGoogle Scholar
  52. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372. doi:10.1016/j.pneurobio.2004.03.006 CrossRefPubMedGoogle Scholar
  53. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29(46):14496–14505. doi:10.1523/JNEUROSCI.4004-09.2009 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ Jr, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:349. doi:10.1186/1756-0500-4-349 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Langner R, Eickhoff SB (2012) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull. doi:10.1037/a0030694 PubMedCentralPubMedGoogle Scholar
  56. Liu X, Powell DK, Wang H, Gold BT, Corbly CR, Joseph JE (2007) Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. J Neurosci 27(17):4587–4597. doi:10.1523/JNEUROSCI.5227-06.2007 CrossRefPubMedGoogle Scholar
  57. Lombardo MV, Chakrabarti B, Bullmore ET, Wheelwright SJ, Sadek SA, Suckling J, Baron-Cohen S (2010) Shared neural circuits for mentalizing about the self and others. J Cogn Neurosci 22(7):1623–1635. doi:10.1162/jocn.2009.21287 CrossRefPubMedGoogle Scholar
  58. Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134. doi:10.1146/annurev-psych-120709-145406 CrossRefPubMedGoogle Scholar
  59. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106(47):20069–20074. doi:10.1073/pnas.0905314106 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF (2012a) On the relationship between the “default mode network” and the “social brain”. Front Hum Neurosci 6:189. doi:10.3389/fnhum.2012.00189 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012b) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22(8):1894–1903. doi:10.1093/cercor/bhr268 CrossRefPubMedGoogle Scholar
  62. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682PubMedGoogle Scholar
  63. Mende-Siedlecki P, Cai Y, Todorov A (2012) The neural dynamics of updating person impressions. Soc Cogn Affect Neurosci. doi:10.1093/scan/nss040 Google Scholar
  64. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506. doi:10.1016/j.tics.2011.08.003 CrossRefPubMedGoogle Scholar
  65. Mitchell JP (2008) Activity in right temporo-parietal junction is not selective for theory-of-mind. Cereb Cortex 18(2):262–271. doi:10.1093/cercor/bhm051 CrossRefPubMedGoogle Scholar
  66. Mitchell JP, Macrae CN, Banaji MR (2006) Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron 50(4):655–663. doi:10.1016/j.neuron.2006.03.040 CrossRefPubMedGoogle Scholar
  67. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905. doi:10.1016/j.neuroimage.2008.09.036 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain–a meta-analysis of imaging studies on the self. Neuroimage 31(1):440–457. doi:10.1016/j.neuroimage.2005.12.002 CrossRefPubMedGoogle Scholar
  69. Orosz A, Jann K, Federspiel A, Horn H, Hofle O, Dierks T, Walther S (2012) Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connect 2(6):303–310. doi:10.1089/brain.2012.0101 CrossRefPubMedGoogle Scholar
  70. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424. doi:10.1038/35077500 CrossRefPubMedGoogle Scholar
  71. Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13(4):160–166. doi:10.1016/j.tics.2009.01.006 CrossRefPubMedCentralPubMedGoogle Scholar
  72. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14(2):198–202. doi:10.1016/j.conb.2004.03.015 CrossRefPubMedGoogle Scholar
  73. Qin P, Northoff G (2011) How is our self related to midline regions and the default-mode network? Neuroimage 57(3):1221–1233. doi:10.1016/j.neuroimage.2011.05.028 CrossRefPubMedGoogle Scholar
  74. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi:10.1073/pnas.98.2.676 CrossRefPubMedCentralPubMedGoogle Scholar
  75. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971CrossRefPubMedGoogle Scholar
  76. Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, Eickhoff SB (2012) Investigating function and connectivity of morphometric findings—exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage 62(3):1354–1366. doi:10.1016/j.neuroimage.2012.05.058 CrossRefPubMedGoogle Scholar
  77. Sander D, Grafman J, Zalla T (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14(4):303–316PubMedGoogle Scholar
  78. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052 CrossRefPubMedGoogle Scholar
  79. Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19(4):1835–1842CrossRefPubMedGoogle Scholar
  80. Saxe R, Powell LJ (2006) It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci 17(8):692–699. doi:10.1111/j.1467-9280.2006.01768.x CrossRefPubMedGoogle Scholar
  81. Schacter DL, Addis DR, Buckner RL (2007) Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci 8(9):657–661. doi:10.1038/nrn2213 CrossRefPubMedGoogle Scholar
  82. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K (2008) Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn 17(2):457–467. doi:10.1016/j.concog.2008.03.013 CrossRefPubMedGoogle Scholar
  83. Schilbach L, Wilms M, Eickhoff SB, Romanzetti S, Tepest R, Bente G, Vogeley K (2010) Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry. J Cogn Neurosci 22(12):2702–2715. doi:10.1162/jocn.2009.21401 CrossRefPubMedGoogle Scholar
  84. Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS ONE 7(2):e30920. doi:10.1371/journal.pone.0030920 CrossRefPubMedCentralPubMedGoogle Scholar
  85. Schnell K, Bluschke S, Konradt B, Walter H (2011) Functional relations of empathy and mentalizing: an fMRI study on the neural basis of cognitive empathy. Neuroimage 54(2):1743–1754. doi:10.1016/j.neuroimage.2010.08.024 CrossRefPubMedGoogle Scholar
  86. Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115. doi:10.1146/annurev.psych.56.091103.070229 CrossRefPubMedGoogle Scholar
  87. Seghier ML, Price CJ (2012) Functional heterogeneity within the default network during semantic processing and speech production. Front Psychol 3:281. doi:10.3389/fpsyg.2012.00281 CrossRefPubMedCentralPubMedGoogle Scholar
  88. Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32(4):811–830. doi:10.1016/j.neubiorev.2007.12.002 CrossRefPubMedGoogle Scholar
  89. Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB (2012) Resting state functional connectivity in patients with chronic hallucinations. PLoS ONE 7(9):e43516. doi:10.1371/journal.pone.0043516 CrossRefPubMedCentralPubMedGoogle Scholar
  90. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510. doi:10.1162/jocn.2008.21029 CrossRefPubMedGoogle Scholar
  91. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574. doi:10.1073/pnas.0800005105 CrossRefPubMedCentralPubMedGoogle Scholar
  92. Stephens GJ, Silbert LJ, Hasson U (2010) Speaker-listener neural coupling underlies successful communication. Proc Natl Acad Sci USA 107(32):14425–14430. doi:10.1073/pnas.1008662107 CrossRefPubMedCentralPubMedGoogle Scholar
  93. Tachibana Y, Hikosaka O (2012) The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 76(4):826–837. doi:10.1016/j.neuron.2012.09.030 CrossRefPubMedCentralPubMedGoogle Scholar
  94. Timmermans B, Schilbach L, Pasquali A, Cleeremans A (2012) Higher order thoughts in action: consciousness as an unconscious re-description process. Philos Trans R Soc Lond B Biol Sci 367(1594):1412–1423. doi:10.1098/rstb 2011.0421CrossRefPubMedCentralPubMedGoogle Scholar
  95. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses. Hum Brain Mapp 33(1):1–13. doi:10.1002/hbm.21186 CrossRefPubMedGoogle Scholar
  96. Vogt BA, Laureys S (2005) Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res 150:205–217. doi:10.1016/S0079-6123(05)50015-3 CrossRefPubMedCentralPubMedGoogle Scholar
  97. Xue G, Lu Z, Levin IP, Weller JA, Li X, Bechara A (2009) Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex 19(5):1019–1027. doi:10.1093/cercor/bhn147 CrossRefPubMedCentralPubMedGoogle Scholar
  98. zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 60(1):162–169. doi:10.1016/j.neuroimage.2011.12.032 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Maren Amft
    • 1
  • Danilo Bzdok
    • 1
    • 6
  • Angela R. Laird
    • 3
    • 4
  • Peter T. Fox
    • 4
    • 5
  • Leonhard Schilbach
    • 2
  • Simon B. Eickhoff
    • 1
    • 6
  1. 1.Institute of Clinical Neuroscience and Medical PsychologyHHU DüsseldorfDüsseldorfGermany
  2. 2.Department of PsychiatryUniversity of CologneCologneGermany
  3. 3.Department of PhysicsFlorida International UniversityMiamiUSA
  4. 4.Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  5. 5.South Texas Veterans Administration Medical CenterSan AntonioTexas
  6. 6.Institut für Neurowissenschaften und Medizin (INM-1)Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations